
Abstract

We investigate abelian duality in topological field theories. The
theories are finite homotopy TFTs, generalizations of finite gauge the-
ories to π-finite spaces and spectra. In d dimension, We proof that the
theories associated to K(A,n) and K(Â, d − 1 − n) are equivalent up
to an invertible field theory, where A is a finite abelian group and Â its
Pontryagin dual group. This is a version of abelian duality for p-form
gauge theories, where the gauge groups are finite abelian. In low di-
mensions, the duality recovers discrete Fourier transform and character
theory for finite abelian groups. In addition, using Brown-Comenetz
duality, we extend our results to π-finite spectra.

Abelian duality is a major theme in both mathematics and physics. In
mathematics, examples of abelian duality includes Pontryagin duality for
topological abelian groups and Cartier duality in algebraic geometry. In
physics, abelian duality appears as electromagnetic duality in 4 dimension
and T -duality in 2 dimension.

In this thesis, we study a finite, topological version of abelian duality.
It is a discrete analogue of the abelian duality for p-form gauge theories [7].
As our gauge groups are finite, the path integral, which normally sums over
an infinite dimensional space, is finite and mathematically well-defined. In
addition, because our groups are discrete, the theories are topological, i.e.,
they don’t depend on the geometry of the spacetime, only its topology. As a
result, our theories can be mathematically constructed under the formalism
of topological field theories (TFTs). The duality is stated and proven as
equivalence of TFTs.

Let d ≥ 1 be the dimension of our theory. A (unextended) d-dimensional
topological field theory (TFT) Z is a symmetric monoidal functor

Z : Bordd → V ectC, (0.0.1)

where Bordd is the category whose objects are closed (d − 1)-dimensional
manifolds and morphisms are d-dimensional bordisms. Physically, a TFT
is a field theory that doesn’t depend on the metrics, thus the geometry, of
the spacetime manifolds. It assigns to a closed d-dimensional manifold M a
complex number Z(M) ∈ C, which is the partition function Z evaluated at
M . To a closed (d− 1)-dimensional manifold N , it assigns the vector space
Z(N) ∈ V ectC of states associated to the space-slice N .

An important class of topological field theories are finite gauge theories
[6, 11]. Let G be a finite group, viewed as our gauge group. For every
topological space N , we have BunG(N) the groupoid of principal G-bundles
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on N . Recall that a groupoid is a category whose morphisms are invertible.
Objects of BunG(N) are principal G-bundles, and morphisms are equiva-
lences of principal G-bundles. When N is a compact manifold, BunG(N) is
a finite groupoid, that is, it has finitely many isomorphism classes of objects,
and each object has finite automorphisms.

For every finite group G, the finite gauge theory with gauge group G
is a d-dimensional TFT ZBG (see §2.5). For a closed (d − 1)-dimensional
manifold N , the d-dimensional theory ZBG assigns to N the vector space

ZBG(N) := C[BunG(N)] (0.0.2)

of locally constant complex-valued functions on BunG(N). For a closed
d-dimensional manifold M , ZBG assigns to M the number

ZBG(M) :=
∑
[x]

1

|AutBunG(M)([x])|
, (0.0.3)

where [x] sums over the isomorphism classes of BunG(M). The partition
function ZBG(M) counts the number of isomorphism classes of principal
G-bundles on M , each one weighted by the size of its automorphism group.

In this paper, we consider a generalization of these finite gauge theories,
called finite homotopy TFTs [5, 9, 13, 24]. Let X be a π-finite space, that
is, a topological space X with finitely many connected components, and for
every point x ∈ X, the homotopy groups πi(X,x) are nontrivial in only
finitely many degrees, and each is a finite group. For such X and dimension
d, the finite homotopy TFT is a d-dimensional topological field theory (§2.4)

ZX : Bordd → V ectC. (0.0.4)

In the case that X = BG, then ZBG is the d-dimensional finite gauge theory
with gauge group G.

Abelian duality is a duality between p-form gauge theories (§2.2), where
the gauge group is typically U(1). In our topological case, the gauge group
is finite abelian. Let A be a finite abelian group, and n a natural num-
ber. The n-th Eilenberg-MacLane space K(A,n) is a π-finite space. The
d-dimensional finite homotopy TFT ZK(A,n) counts n-principal A-bundles.
It is the discrete analogue of p-form gauge theories.

Under abelian duality, the gauge group goes to its Pontryagin dual.
When A is an abelian group, the Pontryagin dual (character dual) group
Â is defined as Hom(A,C×). In [12], Freed and Teleman proved that the
3-dimensional finite homotopy TFTs ZK(A,1) and ZK(Â,1) are isomorphic.
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In this thesis, following [12, §9], we extend this equivalence to general n and
arbitrary dimension d:

Theorem (Abelian duality). Let A be a finite abelian group and Â its Pon-
tryagin dual. Let d ≥ 1 be the dimension of our theory and choose n < d.
Let ZK(A,n), ZK(Â,d−1−n) be the d-dimensional finite homotopy TFTs asso-

ciated to K(A,n) and K(Â, d− 1− n). There is an equivalence of oriented
topological field theories:

ZK(A,n)
∼= ZK(Â,d−1−n) ⊗ E|K(A,n)|, (0.0.5)

where is E|K(A,n)| is the d-dimensional Euler TFT (§4.2), which is an in-
vertible TFT.

Our result extends to π-finite spectra. A spectrum X is π-finite if its
(stable) homotopy groups πi(X ) are nontrivial in finitely many degrees and
each is a finite abelian group. For a π-finite spectrum X , its underlying
space Ω∞X is a π-finite space. We define the d-dimensional finite homotopy
TFT associated to X as the finite homotopy TFT of its underlying space:

ZX := ZΩ∞X : Bordd → V ectC. (0.0.6)

Pontryagin duality can also be extended to π-finite spectra. In [4], Brown
and Comenetz defined a dual spectrum X̂ for any spectrum X . When X is
π-finite, then X̂ is also π-finite. It is a generalization of Pontryagin duality:
let A be an abelian group and HA be its Eilenberg-MacLane spectrum, then

ĤA = HÂ, (0.0.7)

where Â is the Pontryagin dual group of A.
Our main theorem is an extension of the theorem above to π-finite spec-

tra:

Theorem (Abelian duality). Let X be a π-finite spectrum and X̂ its Brown-
Comenetz dual. Let ZX , ZΣd−1X̂ be the corresponding d-dimensional finite
homotopy TFTs. There is an equivalence of (suitably oriented) topological
field theory:

D : ZX ∼= ZΣd−1X̂ ⊗ E|X |, (0.0.8)

where is E|X | is the d dimensional Euler TFT (§4.2), which is an invertible
TFT.
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Contents We now describe the content of the thesis:
In §1 we review electromagnetic duality in Maxwell’s theory and abelian

duality for p-form gauge theories. This section is entirely motivational and
is not needed for the rest of the thesis.

In §2 we define the d-dimensional finite homotopy TFT ZX for any π-
finite space X.

In §3 we review two duality theorems in stable homotopy theory: Poincaré
duality and Brown-Comenetz duality.

In §4 we review the Euler characteristics and define the Euler TFT.
In §5 we state and proof the main theorem.
In the appendix §A we review the homotopy theory needed for the thesis.

Notations All manifolds are smooth, compact, and possibly with bound-
aries. A manifold is closed if it has no boundary. d-dimensional manifolds
are also referred to as d-manifolds. Same for bordisms. We will suppress
all ∞-category notations. All limits and colimits are homotopy limits and
colimits. S, S∗, Sp are the (∞)-categories of spaces, pointed spaces, and
spectra. Maps(−,−) is the mapping spaces functor in S, Maps(−,−) is the
mapping spectrum functor in Sp.
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1 Physical motivations

In this section we review electromagnetic duality in Maxwell’s theory and
its generalization, abelian duality for p-form gauge fields. This provides the
physical motivation for our abelian duality theorem. Note that this section
is entirely motivational and can be safely skipped.

1.1 Electromagnetic duality

Let M = R3,1 be the (3 + 1)-dimensional Minkowski spacetime. The
Maxwell’s equations (in vacuum) are:

~∂ · ~E = 0 ~∂ · ~B = 0 (1.1.1)

~∂ × ~E = −∂
~B

∂t
~∂ × ~B =

∂~E

∂t
(1.1.2)

where ~E is the electric field and ~B is the magnetic field. The Maxwell’s
equations 1.1.1 are invariant under electromagnetic duality :

(~E, ~B) 7→ (~B,−~E). (1.1.3)

In the relativistic notation, we can package the electric and magnetic field
into the electromagnetic field strength F , which is a 2-form on M :

F 0i = −F i0 = −Ei F ij = −εijkBk. (1.1.4)

The Maxwell’s equations 1.1.1 have compact form in terms of F :

∂νF
µν = 0 ∂µ ∗ Fµν = 0, (1.1.5)

where

∗ Fµν =
1

2
εµνλρFλρ. (1.1.6)

is the Hodge star operator ∗ applied to F . The electromagnetic duality 1.1.3
becomes

Fµν 7→ ∗Fµν ∗Fµν 7→ −Fµν . (1.1.7)

Now we explore what happens in the quantum theory, which is a pure
abelian gauge theory. The dynamical field is the U(1) gauge connection
(electromagnetic potential) Aµ. The field-strength F is simply dA, the ex-
terior derivative of A. The action of the theory is

S = − 1

2g2

∫
d4x FµνFµν = − 1

2g2

∫
d4x dA ∧ ∗dA, (1.1.8)
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where ∧ is the wedge product of differential forms. This the electric picture,
as the gauge field can be couple to electrically charged particles.

We move on to the magnetic picture. It is once again an U(1) gauge
theory, with gauge field Ã and the field strength F̃ = dÃ. the action is

S̃ = − 1

2g̃2

∫
d4x dÃ ∧ ∗dÃ. (1.1.9)

To prove electromagnetic duality, we need to show that these theories are
equivalent for some given (g, g̃), with F̃ = ∗F . We will sketch a proof of
this, and its extension for general p-form gauge theories in the §1.2.

1.2 Abelian duality

In this section we review the formalism of p-form (U(1)) gauge theories
and abelian duality between them. We present a path integral argument
to show that the dual theories are equivalent. This serves as the physical
motivation for the thesis, which is a topological formulation of this duality
for finite discrete abelian groups. Note that the arguments given here are
imprecise and incomplete. See [7] for a more precise treatment.

In §1.1 we reviewed electromagnetism and pure U(1) Yang-Mills on the
Minkowski spacetime. The dynamical field is the electromagnetic potential
A, which on the flat spacetime is simply a 1-form. Its field strength F = dA
is a 2-form.

We want a p-form analogue: a p-form gauge field is a p-form A, and its
field strength F = dA is (p + 1)-form. The gauge symmetries are given by
(p−1)-forms. Given a gauge symmetry α, the gauge transformation is given
by

A 7→ A+ dα, (1.2.1)

The field strength F is unchanged under a generalized gauge transformation
as d2α = 0. The action of our p-form gauge theory is

S[A] =
1

g2

∫
F ∧ ∗F =

1

g2

∫
dA ∧ ∗dA. (1.2.2)

The partition function Z is

Z =

∫
DA eiS[A]. (1.2.3)

When p = 1 we recovered U(1) gauge theory.
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Remark 1.2.4. The (higher) gauge group of these p-form gauge theories is
U(1). However, on the Minkowski spacetime, we can’t see the topological
difference between U(1) and R. For example, all U(1) bundles on M are
trivial. On a more general spacetime manifold, the higher U(1) gauge fields
are defined via differential cohomology, a generalization of differential forms
that also remembers the topology of the (higher) gauge bundles. A good
reference is [8, §2].

Now we want to extend electromagnetic duality to abelian duality be-
tween p-form gauge theories in arbitrary dimension. Fix a dimension d and
p < d. The abelian dual of the p-form gauge theory should be a q-form
gauge theory, with field strength F̃ = dÃ and satisfies the equation

F̃ = ∗F. (1.2.5)

From degree considerations, we see that the degree of F̃ is d− p− 1, thus

q = d− p− 2. (1.2.6)

For examples, for pure abelian Yang-Mills in 4 dimension, we have d = 4
and p = 1. Therefore q = 1. We see that we should have a duality between
U(1) gauge fields.

Now we give a heuristic path integral argument for abelian duality. Given
a p-form gauge theory, there is an (d− p− 2)-form gauge theory that gives
the same physics.

Recall that the action for our p-form theory is

S[A] =
1

g2

∫
F ∧ ∗F =

1

g2

∫
dA ∧ ∗dA. (1.2.7)

A is a p-form. Now consider a different action, with fields A and B:

S′[A,B] = g2

∫
B ∧ ∗B + 2i

∫
B ∧ dA. (1.2.8)

B is a (d−p−1)-form. As A and B are both dynamical fields, the partition
function is

Z ′ =

∫
DA DB eiS

′[A,B]. (1.2.9)
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Now we can complete the square with respect to B, and we get

S′[A,B] = g2(

∫
B ∧ ∗B +

2i

g2
B ∧ dA) (1.2.10)

= g2(

∫
(B +

i

g2
∗ dA) ∧ ∗(B +

i

g2
∗ dA) +

1

g4
(∗dA ∧ dA))

(1.2.11)

= g2

∫
(B +

i

g2
∗ dA) ∧ ∗(B +

i

g2
∗ dA) +

1

g2

∫
∗dA ∧ dA

(1.2.12)

The the only B-dependent term in the action is the quadratic term

g2

∫
(B +

i

g2
∗ dA) ∧ ∗(B +

i

g2
∗ dA). (1.2.13)

For a fix A, as

B +
i

g2
∗ dA (1.2.14)

is simply a translation in the B space, the integral∫
DB e

ig2
∫

(B+ i
g2
∗dA)∧∗(B+ i

g2
∗dA)

(1.2.15)

=

∫
DB eig

2B∧∗B (1.2.16)

simply gives a constant, which we will ignore. Thus we see that the partition
function

Z ′ =

∫
DA DB eiS

′[A,B] (1.2.17)

=

∫
DA e

i
g2

∫
∗dA∧dA

(∫
DB e

ig2
∫

(B+ i
g2
∗dA)∧∗(B+ i

g2
∗dA)

)
(1.2.18)

=

∫
DA e

i
g2

∫
∗dA∧dA

(1.2.19)

=

∫
DA eiS[A]. (1.2.20)

recovers the original theory Z.
On the other hand, we integrate out A in Equation 1.2.8 and get the

constraint
dB = 0. (1.2.21)
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As we are in Minkowski spacetime, this tells us that B = dÃ for some
q = d− p− 2 form Ã1. Thus we see that the theory Z ′ is equivalent to the
q-form gauge theory, with action

g2

∫
dA ∧ ∗dA. (1.2.22)

Remark 1.2.23. The coupling constants of the dual theory is g̃ ∝ 1
g . If the

original theory has a large coupling constant g � 1 (thus nonperturbative),
then the abelian dual theory has a small coupling constant. This is the
beginning of S-duality (strong-weak duality).

Example 1.2.24. Let d = 2, p = q = 0, then the theories are 2d sigma models
to circles of radius R and 1/R. This is the beginning of T-duality. See [16,
§11.2].

Example 1.2.25. Let d − 3, p = 1, q = 0, we get the well-known duality
between sigma models and gauge theories in 3 dimension.

Example 1.2.26. Let d = 4, p = q = 1, we get electromagnetic duality for
the quantum Maxwell theories.

In the thesis, we proof a version of abelian duality where the (higher)
gauge groups are discrete and finite, formulated as equivalences of topolog-
ical field theory.

1In general the argument is more delicate, see [16] chapter 11.2 page 251 see an argu-
ment where d=2, p=q=0.
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2 Finite homotopy TFTs

In this section we define the d-dimensional finite sigma model TFT ZX
associated to a π-finite space X. In §2.1 we recall the definition of topological
field theories. In §2.2 we give some background on π-finite spaces. In §2.3
we discuss the O functor from spans of π-finite spaces to V ectC. In §2.4 we
use O to define the finite sigma model ZX for a π-finite space X. In §2.5
we compute some examples of finite homotopy TFTs.

2.1 Topological field theories

Let us first motivate topological field theories. In a d-dimensional quan-
tum theory, we have a partition function Z. Given a d-dimensional manifold
M , which we viewed as the spacetime of the theory, we have:

Z(M) =

∫
Dφ eiS[φ], (2.1.1)

where φ represents all fields of the theory, S =
∫
M L(φ) is the action, and

L is the Lagrangian. Note that the integral integrates over all field possible
field configurations over M . In a quantum theory, the field configurations
are often infinitely dimensional, making the measure Dφ and the integral
difficult to mathematically define.

In a topological theory, there is no dependence on the metric. The fields
are often discrete and finite, and we can actually evaluate the path integral
as a finite sum. Thus for any d dimensional closed manifold M we expect
a number Z(M) ∈ C. More generally, given a manifold M with boundary
∂M ' N t N ′, then we can view N and N ′ as the incoming and outgoing
space-slice, and M an evolution through time. In this case, we should have
a complex vector space of initial states Z(N). For a given state v ∈ Z(N),
we can let it evolve and get a state v′ ∈ Z(N ′). Thus we see that Z(M)
gives a map Z(N)→ Z(N ′).

A d-manifold M with ∂M
∼−→ N t N ′ is called a bordism from N to

N ′. Two bordism M , M ′ from N to N ′ are isomorphic if there exists a
diffeomorphism from M to M ′ that restricts to identity on the boundaries.
In addition, given bordisms M : N → N ′ and M ′ : N ′ → N ′′, we can glue
them together at N ′ 2and form a bordism M tN ′ M ′ : N → N ′′. That is,
we can compose bordisms.

2To rigorously glue two bordisms together, one needs a collar neighborhood at N ′.
There is a contractible choice of collar neighborhoods, but such choice is needed.
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Figure 1: Bordisms and composition

Definition 2.1.2. The d-dimensional (unoriented) bordism category Bordd
is the category whose objects are closed (d − 1)-manifold, and morphisms
between them are isomorphism classes of unoriented bordisms. Composition
is given by gluing bordisms along the common boundary 3. It is a symmetric
monoidal category under disjoint union.

Remark 2.1.3. This is called the unoriented bordism category because the
manifolds and bordisms are unoriented. Often than not, the field theory
require additional tangential structure, such as an orientation (for integra-
tion), or a Spin structure (for the fermionic fields). There is a general notion
of tangential structures Θ. For each Θ, we can define a corresponding bor-
dism category BordΘ

d , symmetric monoidal under disjoint union. We will
not need the general notion of tangential structure and BordΘ

d . For detail,
see [19, §2.4]. However, for a E1-ring spectrum R, we will define the R-
oriented bordism category BordRd (see §5.2). Currently we only need the
unoriented bordism category Bordd as the finite homotopy TFTs ZX are
defined on unoriented manifolds.

Remark 2.1.4. The empty set ∅ is a closed n-dimensional manifold for any
n ≥ 0. When viewed as a n-dimensional manifold, we denote it as ∅n. ∅d−1

is the unit object for the symmetric monoidal structure on Bordd (and its
tangential variants). The set of endormorphism of the unit object

ΩBordd := MorBordd(∅d−1,∅d−1) (2.1.5)

is the set of isomorphism classes of closed d-manifolds. It is a monoid un-
der disjoint union. Similarly, for any tangential structure Θ, ΩBordΘ

d is
the monoid of isomorphism classes of closed d-manifold with Θ-tangential
structure.

3The complication with collar neighborhoods make defining Bordd difficult. These
difficulty will not arise in our constructions. For more detail, see [23, §3.1].
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Remark 2.1.6. We have defined the unextended bordism categories. See [19,
§1.2] for the definitions of the extended bordism categories.

We want to formulate a TFT as a symmetric monoidal functor out of
the bordism category. We need our target category:

Definition 2.1.7. The category of C-linear vector spaces, V ectC, is the
category whose objects are finite dimensional C-linear vector spaces and
morphisms are C-linear transformations. It is symmetric monoidal under
the tensor products ⊗.

Following [2], we define a topological field theory:

Definition 2.1.8. A d-dimensional (unoriented) topological field theory is
a symmetric monoidal functor Z : Bordd → V ectC.

Of course, for every tangential structure Θ, one can define a d-dimensional
Θ-oriented TFT as a symmetric monoidal functor Z : BordΘ

d → V ectC.

Remark 2.1.9. Let Z be a d-dimensional TFT. As it is symmetric monoidal,
Z(∅d−1) = C. For a closed d-manifold M , viewed as an morphism ∅d−1 →
∅d−1, we have Z(M) : C→ C given by multiplication by a scalar. Therefore
a TFT assigns numbers to closed d-manifolds. More generally, for a bordism
M : N → N ′, we get a map of states Z(N)→ Z(N ′). This is exactly what
we want from a topological field theory.

Remark 2.1.10. Let Lines be the Picard groupoid of V ectC. The objects of
Lines are 1-dimensional vector spaces, and morphisms are invertible linear
transformation between them. A d-dimensional TFT

Z : Bordd → V ectC (2.1.11)

is called invertible if it factors through Lines. If Z is invertible, then for
every closed (d− 1)-manifold N , Z(N) is 1-dimensional; for every bordism
M : N → N ′,

Z(M) : Z(N)→ Z(N ′) (2.1.12)

is an isomorphism. An example of invertible field theory is the the Euler
TFT Eλ defined in §4.2.

2.2 π-finite spaces

In this section we define the π-finite spaces and proof some closure prop-
erties. The basics of the homotopy theory of topological spaces is reviewed
in appendix A.1. Let S be the (∞-)category of spaces, and

Maps(−,−) : Sop × S → S (2.2.1)
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be the mapping space functor.

Definition 2.2.2. A topological space X is π-finite space if π0(X) is finite,
and for every x ∈ X, πi(X,x) is nontrivial for only finitely many i, and each
one is a finite group.

The full subcategory of π-finite spaces is denoted as Sfin.

Example 2.2.3. Let X be a finite set, then as a discrete topological space it
is π-finite.

Example 2.2.4. Let G be a (discrete) group. The classifying space BG is a
topological space with the following property:

1. π0(BG) = ∗.

2. For x ∈ BG, we have π1(BG, x) ' G.

3. πi(BG, x) = 0 for i ≥ 1.

Maps into BG classifies principal G bundles. When G is finite, this is a
π-finite space.

Example 2.2.5. Let A is an abelian group, n ≥ 1, The n-th Eilenberg
MacLane space K(A,n) is a topological space with the following property:

1. π0(K(A,n)) = ∗.

2. for x ∈ K(A,n), we have πn(K(A,n), x) ' A.

3. πi(K(A,n), x) = 0 for i 6= n

When A is finite, K(A,n) is a π-finite space. Maps into K(A,n) classifies
n-th cohomology classes with A coefficients:

π0(Maps(−,K(A,n))) ' Hn(−, A). (2.2.6)

Geometrically, K(A,n) classify n-principal A bundles.

Now we discuss some closure properties of Sfin.

Proposition 2.2.7. Let p : X → Z, q : Y → Z be maps π-finite spaces, If

W X

Y Z

q′

p′ p

q

(2.2.8)

is a (homotopy) pullback diagram in S, then W is also a π-finite space.
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Proof. It is easy to see that W has finite connected components. Take a
point w ∈W , then we have a commutative diagram of based spaces:

(W,w) (X, q′(w))

(Y, p′(w)) (Z, p ◦ q′(w)).

q′

p′ p

q

(2.2.9)

This is a pullback diagram in S∗, the category of pointed spaces. Note
that the homotopy groups of the based spaces π∗(W,w) is the same as the
homotopy groups of W at w. The finiteness of π∗(W,w) follows from the
Mayer-Vietoris long exact sequence

· · · → π∗(W,w)→ π∗(X, q
′(w))⊕ π∗(Y, p′(w))→ π∗(Z, p ◦ q′(w))→ · · ·

(2.2.10)
and the fact that X,Y, Z are π-finite spaces.

We will need the following lemma:

Lemma 2.2.11. Let M be a (compact) manifold, X a π-finite space, then
the mapping space Maps(M,X) is again a π-finite space.

Proof. As

Maps(M tM ′, X) 'Maps(M,X)×Maps(M ′, X). (2.2.12)

and
πi(X × Y ) = πi(X)× πi(Y ), (2.2.13)

we see that it is suffice to proof the case where M is connected, which we
assume from now on. Given two spaces X,Y , then

Maps(M,X t Y ) 'Maps(M,X) tMaps(M,Y ). (2.2.14)

As π-finite spaces are finite disjoint unions of connected π-finite spaces, it
is enough to prove the case where X is a connected π-finite space.

We will do this by induction. First we look at the case where the homo-
topy groups of X are concentrated in a single degree i (i > 0 as π0(X) = ∗).
Therefore either X = BG for G a finite group or X = K(A,n) for A a finite
abelian group. In the case that X = BG, we see that

Maps(M,BG) = |BunG(M)| (2.2.15)
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is the classifying space of the groupoid of principal G-bundles on M (see
§2.5.3). As M is a compact manifold, there are finitely many different
isomorphism classes of principal G bundles on M , then π0(Maps(M,BG))
is a finite set. As each principal G-bundle P on M has finite automorphism
group, we see that π1(Maps(M,BG), x) is finite for any x ∈Maps(M,BG).
In addition, it has no higher homotopy groups, therefore it is a π-finite space.

In the other case, let X = K(A,n) for A a finite abelian group. Then

πi(Maps(M,K(A,n))) = Hn−i(M,A) (2.2.16)

is the (n − i)-th cohomology group of M with A coefficients (this will play
a major role in the main theorem). As M is compact and A finite, they are
also finite. One way to see this is by considering a finite CW complex K
homotopic equivalent to M . Then the finite CW cochain complex

C∗(K,Z)⊗A (2.2.17)

has cohomology H∗(M,A). At each degree i , the cochain complex

Ci(K,Z)⊗A (2.2.18)

is a finite abelian group. Therefore the subquotient H i(M,A) is also finite.
This shows that

Maps(M,K(A,n)) (2.2.19)

is a π-finite space.
Now we use induction. We assume the lemma is true for all connected

π-finite space with homotopy group concentrated in degrees less than n (case
n = 2 is X = BG proven above). We will prove the lemma for connected π-
finite space X with homotopy group concentrated in degrees less or equal to
n. Take x ∈ X and consider (X,x) as a based space. Consider the following
fiber sequence

τ≥nX → X → τ≤nX. (2.2.20)

As the homotopy group of τ≥nX is concentrated in degree n, we have

τ≥nX = K(πn(X), n). (2.2.21)

As Maps(M,−) : S → S takes fiber sequences to fiber sequences, we have
a fiber sequence

Maps(M, τ≥nX)→Maps(M,X)→Maps(M, τ≤nX). (2.2.22)
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Note that
Maps(M, τ≥nX) 'Maps(M,K(πn(X), n)) (2.2.23)

and
Maps(M, τ≤nX) (2.2.24)

are both π-finite. By the long exact sequence of homotopy groups, we see
that Maps(M,X) is also π-finite.

2.3 Functions on π-finite spaces

Let V ectC be the symmetric monoidal category of finite dimensional C-
vector spaces, Sfin the category of π-finite spaces. The goal of this section
is to define the symmetric monoidal functor

O : Span(Sfin)→ V ectC. (2.3.1)

First we need to define the span category Span(Sfin).

Definition 2.3.2. The category of spans (correspondences) of π-finite spaces
Span(Sfin) the category with objects π-finite spaces X, and a morphism
from X to X ′ is a span

Y

X X ′.

(2.3.3)

Given two morphisms

Y Y ′

X X ′, X ′ X ′′,

(2.3.4)

the composition is the (homotopy) pullback 4:

Y ×X′ Y ′

X X ′′.

(2.3.5)

4Since S is a ∞-category, so is Span(Sfin). There are also addition coherence issues
since the (homotopy) pullback is only well-defined up to a contractible choice. See [15] for
more detail. These complications will not arise in our discussion.
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Span(Sfin) is a symmetric monoidal category under Cartesian products:
The product of objects X,Y ∈ Span(Sfin) is X × Y . The product of two
span

Y W

X X ′, Z Z ′

(2.3.6)

is
Y ×W

X × Z X ′ × Z ′.

(2.3.7)

Now we define O on objects:

Definition 2.3.8. Let X be a space, thenO(X) is the vector space of locally
constant complex valued functions C[π0(X)] on X.

Example 2.3.9. Let X = BG be the classifying space of a group G. As
π0(BG) = ∗, we see that evaluation at the only connected component gives
an equivalence

O(BG)
∼−→ C, (2.3.10)

with 1 ∈ C corresponds to the constant function 1 on BG.

When X is a π-finite space, then O(X) is finite dimensional.

Definition 2.3.11. Given p : X → Y a map of π-finite spaces, We define
the pullback map

p∗ : O(Y )→ O(X) (2.3.12)

as follows: given f : Y → C and x ∈ X,

p∗(f)(x) := f(p(x)). (2.3.13)

This defines a functor

(−)∗ : (Sfin)op → V ectC. (2.3.14)

We also need to define pushforwards.
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Definition 2.3.15. Let X and Y be π-finite spaces. Given p : X → Y , we
define pushforward map

p∗ : O(X)→ O(Y ) (2.3.16)

as follows: let g : X → C and y ∈ Y ,

p∗(g)(y) :=
∑

[x]→[y]

|π1(Y, y)|
|π1(X,x)|

|π2(X,x)|
|π2(Y, y)|

· · · g(x), (2.3.17)

where
∑

[x]→[y] means summing over all [x] ∈ π0(X) that maps to the the
connected component [y] ∈ π0(Y ) of y.

For a fix connected component [x], we pick a point x in the connected
component. As |πi(X,x)| only depends on the connected component [x],
|πi(X,x)| is well-defined in Equation 2.3.17. g(x) is also well-defined as g is
a locally constant function.

The pushforward map sums over the fibers in a way that keeps track the
sizes of the higher homotopy groups. The infinite product is actually finite
as π-finite spaces have finitely many nontrivial homotopy groups, and each
homotopy group is finite.

Example 2.3.18. Continuing the BG example, we have the projection map
p : BG→ ∗. Recall that O(∗) = C[∗] = C1, where 1 is the constant function
on ∗ with value at 1. Similarly, O(BG) = C1BG. We have p∗(1) = 1BG and
p∗(1BG) = 1

|G|1.

Proposition 2.3.19. The pushforward maps define a functor

(−)∗ : Sfin → V ectC. (2.3.20)

Proof. Let maps p : X → Y, q : Y → Z be maps between π-finite spaces.
We have to show that

q∗ ◦ p∗ = (q ◦ p)∗. (2.3.21)
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For g : X → C and z ∈ Z,

(q∗ ◦ p∗(g))(z) =
∑

[y]→[z]

|π1(Z, z)|
|π1(Y, y)|

|π2(Y, y)|
|π2(Z, z)|

· · · (p∗(g))(y) (2.3.22)

=
∑

[y]→[z]

|π1(Z, z)|
|π1(Y, y)|

|π2(Y, y)|
|π2(Z, z)|

· · · (2.3.23)

∑
[x]→[y]

|π1(Y, y)|
|π1(X,x)|

|π2(X,x)|
|π2(Y, y)|

· · · g(x) (2.3.24)

=
∑

[x]→[z]

|π1(Z, z)|
|π1(X,x)|

|π2(X,x)|
|π2(Z, z)|

· · · g(x) (2.3.25)

= ((q ◦ p)∗(g))(z) (2.3.26)

We have this compatibility lemma between pullback and pushforward
maps:

Lemma 2.3.27 (Base-change). Let

W X

Z Y

q′

p′ p

q

(2.3.28)

be a (homotopy) pullback diagram of π-finite spaces. Then we have an equal-
ity of maps

q∗ ◦ p∗ = p′∗ ◦ q′∗ : O(X)→ O(Z) (2.3.29)

Proof. Functions are determined by their values at points. Let z ∈ Z,
consider as a map ∗ z−→ Z, then

f(z) = z∗(f)(∗). (2.3.30)

As two small pullback diagrams forms a larger pullback diagram, it is suffice
to check the lemma with the case where Z = ∗, and q : Z → Y is given by
a point y ∈ Y . In this case, W = fiby(p) is the fiber of the map p : X → Y
at y ∈ Y . The points in W are pairs

(x, γ : f(x) y), (2.3.31)
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where x is a point in X and γ is a path f(x) y in Y . Let f ∈ O(X),

(q∗ ◦ p∗(f))(∗) = p∗(f)(y) (2.3.32)

=
∑

[x]→[y]

|π1(Y, y)|
|π1(X,x)|

|π2(X,x)|
|π2(Y, y)|

· · · f(x). (2.3.33)

On the other hand,

(p′∗ ◦ q′∗(f))(∗) =
∑
[x′]

1

|π1(fiby(p), x′)|
|π2(fiby(p), x

′)| · · · q′∗(f)(x′).

(2.3.34)

For each x′ = (x, γ),
q′∗(f)(x′) = f(x). (2.3.35)

We can look at one components of X at a time. That is, we assume X is
connected. Take a point x ∈ X and y = p(x), We need to show that

|π1(Y, y)|
|π1(X,x)|

|π2(X,x)|
|π2(Y, y)|

· · · =
∑

[x′]→[x]

1

|π1(fiby(p), x′)|
|π2(fiby(p), x

′)| · · ·

(2.3.36)
This follows from the long exact sequence of homotopy group associated to
the fiber sequence fiby(p)→ X

p−→ Y :

· · · → π∗(fiby(f))→ π∗(X)→ π∗(Y )→ · · · (2.3.37)

We can finally define O functor: given a span

Y

X X ′,

p q
(2.3.38)

we define O(Y ) : O(X)→ O(X ′) to be

q∗ ◦ p∗ : O(X)
p∗−→ O(Y )

q∗−→ O(X ′). (2.3.39)

We need to show that this is well-defined:

Proposition 2.3.40. This defines a functor O : Span(Sfin)→ V ectC.
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Proof. We have to check that composition agrees. Given two spans

Y Y ′

X X ′, X ′ X ′′,

p q s t (2.3.41)

we have the larger diagram

Y ×X′ Y ′

Y Y ′

X X ′ X ′′.

s′ q′

p q s t

(2.3.42)

The composition of the two span is

Y ×X′ Y ′

X X ′′.

p◦s′ t◦q′ (2.3.43)

Lastly, we have

O(Y ′) ◦ O(Y ) = t∗ ◦ s∗ ◦ q∗ ◦ p∗ (2.3.44)

= t∗ ◦ q′∗ ◦ s′∗ ◦ p∗ (2.3.45)

= (t ◦ q′)∗ ◦ (p ◦ s′)∗ (2.3.46)

= O(Y ×X′ Y ′). (2.3.47)

Remark 2.3.48. In the last equation, We exactly used the functoriality of
pullback, pushfoward, and base change lemma. The fact that we have a
pushforward map and the base change lemma holds is a specific case of a
more general phenomenon, called ambidexterity ([21]).

2.4 Finite homotopy TFTs

Let X be a π-finite space. In this section, we define the d-dimensional
finite homotopy TFT ZX associated to X, which is a d-dimensional (unori-
ented) topological field theory

ZX : Bordd → V ectC. (2.4.1)

22



First we need to define the field functor FX .

Definition 2.4.2. We define

FX : Bordd → Span(Sfin) (2.4.3)

as follows: let N ∈ Bordd be a closed (d− 1)-manifold. Then

FX(N) := Maps(N,X). (2.4.4)

Maps(N,X) is a π-finite space by Proposition 2.2.11. Similarly, for a bor-
dism M : N → N ′, we define

FX(M) := Maps(M,X) (2.4.5)

as a span:

Maps(M,X)

Maps(N,X) Maps(N ′, X).

(2.4.6)

Proposition 2.4.7. FX defines a symmetric monoidal functor: Bordd →
Span(Sfin).

Proof. We need to show composition holds. Given two bordisms

M : N → N ′, M ′ : N ′ → N ′′. (2.4.8)

We have the composition bordism

M tN ′ M ′ : N → N ′′. (2.4.9)

Note that
N ′ M

M ′ M tN ′ M ′
(2.4.10)

is a pushout diagram in S. As Maps(−, X) : Sop → S takes pushouts to
pullbacks, we have a pullback diagram:

Maps(M tN ′ M ′, X) Maps(M ′, X)

Maps(M,X) Maps(N ′, X).

(2.4.11)
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In the span category Span(Sfin), composition of spans are given by pull-
backs. Therefore

FX(M tN ′ M ′) = Maps(M tN ′ M ′, X) (2.4.12)

'Maps(M,X)×Maps(N ′,X) Maps(M ′, X) (2.4.13)

= FX(M ′) ◦ FX(M). (2.4.14)

In addition, this functor is symmetric monoidal as Maps(N t N ′, X) '
Maps(N,X)×Maps(N ′, X).

Now we can compose

FX : Bordd → Span(Sfin) (2.4.15)

with the symmetric monoidal functor

O : Span(Sfin)→ V ectC (2.4.16)

to get a symmetric monoidal functor from Bordd to V ectC, i.e. a TFT:

Definition 2.4.17. Given X a π-finite space, the d-dimensional finite ho-
motopy TFT associated to X is

ZX := O ◦ FX : Bordd → V ectC. (2.4.18)

Remark 2.4.19. In physical terms, FX(M) is the space of fields of this theory
ZX on M . The exponentiated action

ei
∫
M L (2.4.20)

is trivial, as we are just summing over the number of fields (weighted by
their automorphisms). See [5] Quinn’s lecture 4 for details.

Remark 2.4.21. Given a π-finite space X and a “character” χ : X → BdC×,
we can define a d-dimensional ”twisted theory” as follows: let M be a closed
d-manifold and evM : M×Maps(M,X)→ X be the evaluation map. Using
this, we can pullback the character

ev∗M χ : X ×Maps(M,X)→ BdC×. (2.4.22)

Given an orientation [M ] and M , then we can integrate ev∗M over [M ]:∫
[M ]

ev∗M χ : Maps(M,X)→ C×. (2.4.23)
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As Maps(M,X) are the fields in this theory, we have an exponentiated
action:

ei
∫
M L(F) := (

∫
[M ]

ev∗M χ)(F) ∈ C×, (2.4.24)

where F ∈Maps(M,X) is a field. This defines a classical invertible field the-
ory. For the quantum theory, we integrate over all fields F ∈Maps(M,X).
Therefore partition function is

Z(M) =

∫
DF (

∫
[M ]

ev∗M χ)(F). (2.4.25)

This theory is an oriented TFT as it needs the orientation [M ] on M . It
is a generalization of Dijkgraaf-Witten theory [6] to π-finite spaces. See [5]
Quinn’s lecture 5 for the full construction. Our finite homotopy TFTs are
simply the cases where χ is the constant map.

2.5 Examples of finite homotopy TFTs

In this section we calculate some examples of finite homotopy TFTs.

Example 2.5.1. Let T be a finite set and M a compact manifold with bound-
ary. The mapping space Maps(N,T ) is homotopic equivalent to the discrete
set T π0(N). If N is a closed (d− 1)-manifold, then

ZT (N) = C[T π0(N)] (2.5.2)

is a vector space of dimension |T |π0(N). This is a trivial sigma model where
the fields are maps into a discrete set.

Example 2.5.3. Let G be a finite group, and BG its classifying space. Let M
be a manifold, then Maps(M,BG) is the classifying space of the groupoid
BunG(M). Recall that BunG(M) the groupoid of principal G bundles on
M . Its object are principal G-bundles on M , and morphisms are equivalence
of principal G-bundles. This is a groupoid, that is, its morphisms are all
invertible. Given a groupoid, one can take its classifying space, which is a
1-truncated space. In this case, the classifying space of BunG(M) is

|BunG(M)| 'Maps(M,BG), (2.5.4)

where'means homotopy equivalence. We see that π0(Maps(M,BG)) is the
set of isomorphism classes of principal G bundles, and for a given principal
G-bundle P , viewed as an object in P ∈Maps(M,BG), we have

π1(Maps(M,BG), P ) = Aut(P ), (2.5.5)
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the group of automorphism of P .
Let N be a closed (d− 1)-manifold, then the field theory ZBG evaluated

at N is
ZBG(N) = C[π0(Maps(M,BG))] (2.5.6)

is the vector space of locally constant functions on the groupoid BunG(M).
For a closed d-dimensional manifold M , ZBG assigns to M the number

ZBG(M) :=
∑
[x]

1

|AutBunG(M)([x])|
, (2.5.7)

where [x] sums over the isomorphism classes of BunG(M). The partition
function ZBG(M) counts the number of isomorphism classes of principal
G-bundles on M , each one weighted by the size of its automorphism group.

This is a finite gauge theory that counts principal G-bundles. In d = 2
dimension, it is closely related to the character theory for finite groups. We
will review the abelian version of this in Example 5.4.9.

Example 2.5.8. LetA be a finite abelian group andK(A,n) its n-th Eilenberg-
MacLane space. The theory ZK(A,n) counts cohomology classes Hn(−, A)
(see Example 5.1.9). As H1(−;A) classifies principal A-bundles, Hn(−;A)
classifies n-principal A-bundles. Therefore ZK(A,n) is the discrete analogue
of the n-form gauge theories defined in §1.2.
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3 Duality theorems in stable homotopy theory

In this section we review two duality theorems: Brown-Comenetz duality
and Poincaré duality. In §3.1 we define π-finite spectra and proof some
basic properties. In §3.2 we develop orientation theory for E1-ring spectrum
and prove Poincaré duality. In §3.3 we review Pontryagin duality for finite
abelian groups. In §3.4 we generalize Pontryagin duality to Brown-Comenetz
duality [4] for π-finite spectra.

3.1 π-finite spectra

The basics of spectra is reviewed in §A.2. Let Sp be the (∞−)category
of spectra.

Definition 3.1.1. Let X be a spectrum. It is called π-finite if the (stable)
homotopy groups π∗X are nonzero only in finitely many degrees, and each
πiX is a finite abelian group.

Remark 3.1.2. If X is a π-finite spectrum, then the underlying space Ω∞X
is a π-finite space.

We will denote the full subcategory of π-finite spectra as Spfin.

Example 3.1.3. Let A be a abelian group, and HA its the Eilenberg MacLane
spectrum. If A is finite, then HA and its shifts are π-finite spectra.

Remark 3.1.4. Another common notion of finiteness for spectrum is dualiz-
ability. Note that π-finiteness is a different notion. For example, the sphere
spectrum S0 is not π-finite.

Now we show some closure properties of Spfin.

Definition 3.1.5. Let C ⊂ Sp be a full subcategory of Sp. Then the
extension closure of C, denoted as Cc, is the smallest full subcategory such
that

1. Cc is closed under suspension (and desuspension).

2. If X ,X ′′ ∈ Cc, and we have a fiber sequence X → X ′ → X ′′ of spectra,
then X ′ ∈ Cc.

The objects in Cc are finite extensions of spectra in C.

Proposition 3.1.6. (Spfin)c = Spfin.
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Proof. Spfin is clearly closed under suspension. Given X → X ′ → X ′′ a
fiber sequence of spectra. If X , X ′′ are π-finite, we need to show that X is
also π-finite. This is due to the long exact sequence of homotopy groups:

· · · → π∗X → π∗X ′ → π∗X ′′ → π∗−1X → · · · . (3.1.7)

π-finite spectra are finite extensions of finite Eilenberg-MacLane spec-
trum:

Proposition 3.1.8. Let C be the full subcategory of finite Eilenberg-MacLane
spectrum (spectrum of the form HA for some A finite abelian group), then
Cc = Spfin.

Proof. Spfin contains C. Thus it is suffice to show that all π-finite spectra
are finite extensions of finite Eilenberg-MacLane spectrum.

Let X be a π-finite spectrum. We will do induction on the range where
the homotopy groups of X are nontrivial. On the base case, where the
homotopy groups of X is concentrated in a single degree, then it is precisely
a suspension of HA, where A is an finite abelian groups. These are in Cc

as Cc is closed under suspension.
We shift X so that its lowest nontrival homotopy group is concentrated

in degree 0. Assume we have proven the case for all X where X ’s homotopy
groups are concentrated in degree 0 to i. For a π-finite spectrum X with
highest nontrivial homotopy group in degree i+1, consider the fiber sequence

τ≥i+1X → X → τ≤iX . (3.1.9)

Note that the homotopy groups of τ≥i+1X is concentrated in a single degree,
namely i+1. Therefore it is a suspension of HA and it is in Cc. On the other
hand, as τ≤iX is a π-fintie spectrum whose nontrivial homotopy groups are
concentrated in degree 0 to i, it is in Cc by induction. As both τ≥i+1X and
τ≤iX are in Cc, so is X .

Lastly, we need the following lemma:

Lemma 3.1.10. Let N be a (compact) manifold, X a π-finte spectrum. The
mapping spectrum

X (M) := Maps(Σ∞+ M,X ). (3.1.11)

is a π-finite space.

28



Proof. Let C ⊂ Sp be the full subcategory of π-finite spectra satisfying the
following property: for any compact manifold with boundary M , X (M) is
a π-finite spectrum. We claim that Cc = C, that is, it is closed under
suspension and extensions. Suspension is easy as

(ΣX )(M) = Σ(X (M)). (3.1.12)

For extensions, given a fiber sequence

X → Y → Z, (3.1.13)

then we have a corresponding fiber sequence

X (M)→ Y(M)→ Z(M). (3.1.14)

If X (M) and Z(M) are in Spfin, by proposition 3.1.8, so is Y(M).
By proposition 3.1.8, it is suffice to show that finite Eilenberg-MacLane

spectra are in C. Let A be a finite abelian group and HA its Eilenberg-
MacLane spectrum. The homotopy groups

π−i HA(M) = H i(M,A) (3.1.15)

are the ordinary cohomology groups of M with A coefficients. These co-
homology are concentrated in degree 0 to dim M . In addition, each co-
homology group is finite as M is compact. Therefore HA(M) is a π-finite
spectrum.

3.2 Poincaré duality

In this section, we define the relative cap product, introduce the notion
of R-orientation, and state the relative Poincaré duality theorem (Theorem
3.2.55). We will take the classical approach to orientation theory ([22]). See
[1] for a more modern approach.

Let S, S∗, Sp be the categories of spaces, pointed spaces, and spectra, S
the sphere spectrum. In appendix A.3, we reviewed the relationship between
spectra and generalized (co)homology theories. Recall that spectra define
generalized (reduced) homology and cohomology theories:

Definition 3.2.1. Let X be a spectrum and N a pointed topological space.
The i-th reduced homology on N with coefficients in X is

X̃i(N) := πi(Σ
∞N ∧ X ). (3.2.2)

The i-th reduced cohomology group of N with coefficients in X is

X̃ i(N) := π−i(Maps(Σ∞N,X )). (3.2.3)
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For unpointed spaces, we get nonreduced (co)homology theories:

Definition 3.2.4. Let X be a spectrum and N a (unpointed) topological
space. The i-th homology on N with coefficients in X is

Xi(N) := πi(Σ
∞
+ N ∧ X ). (3.2.5)

The i-th cohomology group of N with coefficients in X is

X i(N) := π−i(Maps(Σ∞+ N,X )). (3.2.6)

Let N → N ′ → N ′′ be a cofiber sequence in pointed spaces. Then we
have a long exact sequence of homology groups:

· · · → X̃∗(N)→ X̃∗(N ′)→ X̃∗(N ′′)→ X̃∗−1(N)→ · · · . (3.2.7)

We also have long exact sequence of cohomology groups:

· · · → X̃ ∗(N ′′)→ X̃ ∗(N ′)→ X̃ ∗(N)→ X̃ ∗+1(N)→ · · · . (3.2.8)

Now we can define relative (co)homology groups:

Definition 3.2.9. Let N → N ′ be a map of (unpointed) topological spaces.
Let N ′′ be their cofiber. It is canonically a pointed space. Then the relative
homology of pair (N ′, N) with coefficients in spectrum X is

X∗(N ′, N) := X̃i(N ′′). (3.2.10)

Similarly, the relative cohomology of pair (N ′, N) with coefficients in spec-
trum X is

X ∗(N ′, N) := X̃ i(N ′′). (3.2.11)

As N+ → N ′+ → N ′′ is a cofiber sequence in pointed spaces, by Equation
3.2.7, we have a long exact sequence of homology groups:

· · · → X∗(N)→ X∗(M)→ X∗(M,N)→ X∗−1(N)→ · · · . (3.2.12)

Similarly, by Equation 3.2.8, we have a long exact sequence of cohomology
groups:

· · · → X ∗(N)→ X ∗(M)→ X ∗(M,N)→ X ∗+1(N)→ · · · . (3.2.13)

Remark 3.2.14. Let i : N ↪→ M be a “nice” inclusion (such as an inclusion
of a boundary component of a manifold), then the cofiber of i is homotopy
equivalent of M/N .
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Now we will construct the cap product.

Construction 3.2.15. Let R be a E1-ring spectrum (see §A.2 for definition)
and X a left R-module spectrum. We have the action map

act : R∧ X → X . (3.2.16)

Let N,N ′, N ′′ be pointed spaces and

f : N → N ′ ∧N ′′ (3.2.17)

be a map of pointed spaces. Given

σ : S → Σ−mR∧ Σ∞N (3.2.18)

a map that represents the homology class

[σ] ∈ π0(Σ−mR∧ Σ∞N) = R̃m(N), (3.2.19)

and
α : Σ∞N ′ → ΣnX (3.2.20)

representing the cohomology class

[α] ∈ X̃ n(N ′). (3.2.21)

Consider the following composition

σ a α : S σ−→ Σ−mR∧ Σ∞N (3.2.22)

id∧f−−−→ Σ−mR∧ Σ∞N ′ ∧ Σ∞N ′′ (3.2.23)

id∧α∧id−−−−−→ Σ−mR∧ ΣnX ∧ Σ∞N ′′ (3.2.24)

act∧id−−−−→ Σ−m+nX ∧ Σ∞N ′′. (3.2.25)

This represents a class in

[σ a α] ∈ π0(Σ−m+nX ∧ Σ∞N ′′) = X̃m−n(N ′′). (3.2.26)

This cohomology class does not depends on the representatives σ and α.
Therefore we have a well-defined map:

− a − : R̃n(N)⊗ X̃ n(N ′)→ X̃m−n(N ′′). (3.2.27)

This is called the cap product.
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Now we move on to the notion of R-orientation, when R is a E1-ring
spectrum. First we need the following lemma:

Lemma 3.2.28. Let M be a d-manifold and x ∈Mo = M−∂M an interior
point in M . We denote M−x the complement of x in M . For any spectrum
X , X∗(M,M − x) ' X̃∗(Sd) ' π∗−d(X ).

Proof. We have to compute the cofiber of M − x ↪→ M . As M − x ⊂ M is
not a “nice inclusion”, we have to homotopic it to be one. This is local in x.
Since x is in the interior of M , we can replace (M,x) with a local coordinate
(Bd, 0), where Bd is the d-dimensional ball and 0 ∈ B is the origin. We
have

cofib (M − x ↪→M) ' cofib (Bd − x ↪→ Bd) (3.2.29)

' Bd/(∂Bd) (3.2.30)

' Sd−1. (3.2.31)

Therefore

X∗(M,M − x) ' X∗(Sd) (3.2.32)

' π∗−d(X ). (3.2.33)

Now we can defineR-orientation on manifolds (possibly with boundaries)
[22, §5]:

Definition 3.2.34. Let M be a d-manifold, R a E1-ring spectrum. Note
that π∗R inherits a graded ring structure.. An R-orientation on M is a
homology class

[M ] ∈ Rd(M,∂M) (3.2.35)

satisfying the following condition: for every interior point x ∈ Mo a point
in the interior, the image of [M ] under

Rd(M,∂M)→ Rd(M,M − x) ' π0(R) (3.2.36)

is an multiplicative unit in the ring π∗(R). The isomorphism is by Lemma
3.2.28.

Example 3.2.37. Let R be HZ/2Z. Every manifold is HZ/2Z-oriented.
Let R be HZ, then HZ-orientation is the usual notion of orientation for
manifolds. Let R be S the sphere spectrum, then a S-orientation on N is a
trivialization of the Thom spectra of the normal bundle of N .
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Remark 3.2.38. If N is a closed d-manifold. Then an R-orientation lives in
Rd(N).

Remark 3.2.39. Given a ring homomorphism of ring spectrum f : R → R′,
then an R-orientation gives a R′-orientation via the pushforward map:

f∗ : R′(−)→ R′(−). (3.2.40)

An R-orientation on a d-dimensional manifold gives a R-orientation on
the boundary:

Proposition 3.2.41. Let M be a d manifold. A R-orientation on M ,
[M ] ∈ Rd(M,∂M), gives a class ∂[M ] ∈ Rd−1(N) via the natural boundary
map

∂ : R∗(M,∂M)→ R∗−1(∂M). (3.2.42)

The class ∂[M ] ∈ R∗−1(∂M) is a R-orientation on the boundary ∂M .

Proof. A proof of this is given in [20, §21.3].

With the notion of R-orientation and cap product, we can define the
Poincaré isomorphism map:

Let R be a E1-ring spectrum and X a left R-module spectrum. Let N be
a R-oriented d-manifold. We denote the orientation class as [N ] ∈ Rd−1(N).
Let f be the diagonal map:

N+ → N+ ∧N+ ' (N ×N)+. (3.2.43)

Then the cap product (see Equation 3.2.27) with [N ] gives maps∫
[N ]

: X ∗(N)→ Xd−∗(N). (3.2.44)

Here’s the Poincaré duality theorem for manifold without boundary:

Theorem 3.2.45 (Poincaré duality). For every ∗, the map∫
[N ]

: X ∗(N)→ Xd−∗(N) (3.2.46)

is an isomrphism.

Proof. See [22, §V.2].
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We need a more general form Poincaré duality for manifolds with bound-
aries. Let M be a R-oriented d-manifold with boundary ∂M = N tN ′. We
have the orientation class [M ] ∈ Rd(M,∂M). Consider the map

M/∂M →M/N ∧M/N ′ (3.2.47)

of pointed spaces. From Equation 3.2.27 we get a map

[M ] a − : X ∗(M,N)→ Xd−∗(M,N ′). (3.2.48)

We denote this map by
∫

[M,N ].

Theorem 3.2.49 (Poincaré duality). The maps∫
[M,N ]

: X ∗(M,N)→ Xd−∗(M,N ′) (3.2.50)

are isomorphisms.

Proof. The general case for ordinary homology theory is given in [Lef].

There are two special examples. Let N = ∂M and N ′ = ∅. We have
the following corollary:

Corollary 3.2.51. The maps∫
[M,∂M ]

: X ∗(M,∂M)→ Xd−∗(M) (3.2.52)

are isomorphisms.

Similarly, let N = ∅, and N = ∂M . We have:

Corollary 3.2.53. The maps∫
[M ]

: X ∗(M)→ Xd−∗(M,∂M) (3.2.54)

are isomorphisms.

Lastly, we need to know the functoriality of the Poincaré duality isomor-
phisms:
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Theorem 3.2.55. Let R be a E1-ring spectrum and X a left R-module
spectrum. Let M be a R-oriented d-manifold with boundary ∂M = N tN ′.
We denote the orientation class as [M ]. It gives orientations [N ], [N ′] on
the boundaries. Poincaré duality isomorphism maps give an equivalence of
long exact sequences:

· · · X̂ ∗(M,N ′) X̂ ∗(M) X̂ ∗(N ′) · · ·

· · · X̂d−∗(M,N) X̂d−∗(M,∂M) X̂d−1−∗(N
′) · · ·

∫
[M,N′]

∫
[M ]

∫
[N′]

(3.2.56)

Proof. For orindary cohomology theories this is proven in [20, §21.4].

3.3 Pontryagin duality

In this section we review Pontryagin duality for finite abelian groups.
We denote the category of abelian group as Ab, and the full subcategory of
finite abelian group as Abfin. Liven A,B ∈ Ab, the set of homomorphism
from A to B, Hom(A,B), has an abelian group structure by point-wise mul-
tiplication. Let C× be the multiplicative group of nonzero complex number.
This is an injective object in Ab. We will write the multiplication of a gen-
eral abelian group A additively. However, we will write the multiplication
of C× multiplicatively.

Definition 3.3.1. Let A be an abelian group. The Pontryagin dual group
Â is Hom(A,C×).

Taking Pontryagin dual gives an exact contravariant functor

D̂ := Hom(−,C×) : Ab→ Abop. (3.3.2)

It is exact as C× is an injective object.

Remark 3.3.3. Normally, the Pontryagin dual ofA is defined to beHom(A,Q/Z).
For a finite abelian group A, the natural map

Hom(A,Q/Z)→ Hom(A,C×) (3.3.4)

is an isomorphism and the two notions coincide. We choose C× over Q/Z
as our TFTs are complex-valued.

Example 3.3.5. Let A = Z, then Â = Hom(A,C×) = C×.
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Example 3.3.6. Let A = Z/nZ, then Â = µn ⊂ C× is the group of n-th root
of unity.

Lemma 3.3.7. Let A,B ∈ Ab, then Â×B ' Â× B̂.

Proof. The product and coproduct coincide in Ab. Thus

Â×B = Hom(A×B,C×) (3.3.8)

' Hom(A,C×)×Hom(B,C×) (3.3.9)

= Â× B̂. (3.3.10)

There is a canonical bilinear pairing

(−,−)A : A× Â→ C×. (3.3.11)

Bilinear means that (a+ a′, α)A = (a, α)A · (a′, α)A. Note that we write the
multiplication of C× multiplicatively. It is equivalent to a group homomor-
phism A⊗ Â→ C×.

This pairing gives a universal characterization for the Pontryagin dual:

Definition 3.3.12. Let A,B ∈ Ab be two abelian groups. A pairing is a
bilinear map µ : A × B → C×. This induces a map φµ : B → Â, given by
φµ(b)(a) := µ(a, b). The pairing µ says to exhibit B as the Pontryagin dual
of A if φµ is an isomorphism.

Example 3.3.13. By above, B = Â, µ = (−,−)A exhibits Â as the Pontryagin
dual of A as φµ : Â→ Â is the identity map. This is the universal example.

Now we restrict to finite abelian groups.

Proposition 3.3.14. If A is a finite abelian group. Then Â is also an finite
abelian group. In addition, |A| = |Â|.

Proof. By the classification of finite abelian group, we know that A is a
product of Z/nZ. The Pontryagin dual of Z/nZ µn, which is finite group of
the same cardinality. For a product of Z/nZ, Proposition 3.3.7 implies that
the dual is also finite of the same size.

Taking Pontryagin dual restricts to a functor

D̂ : Abfin → (Abfin)op. (3.3.15)
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Remark 3.3.16. In fact, for A finite, Â is noncanonically isomorphic to A.
It is best to view them as different groups. This is similar to the case of the
dual of a finite dimensional vector space.

Given A,B ∈ Ab and µ : A×B → C× a bilinear pairing. Let C[A] be the
free vector space generated by (the set) A. Similarly for C[B]. The pairing
µ give rise to a bilinear pairing αµ : C[A] ⊗ C[B] → C. On basis vectors it
sends a⊗b→ µ(a, b), where we identity an element a ∈ A with the standard
basis vector in C[A].

Now assume A and B finite. A pairing α : V ⊗ V ′ → C× of finite
dimensional vector spaces is called nondegenerate if the natural map V ′ →
V ∗ = HomC(V ∗,C) is an isomorphism.

Proposition 3.3.17. µ exhibits B as the Pontryagin dual of A iff

αµ : C[A]⊗ C[B]→ C (3.3.18)

is a nondegenerate pairing of finite dimensional vector spaces.

Proof. By Proposition 3.3.14,

dim(C[A]) = |A| = |B| = dim(C[B]). (3.3.19)

Therefore it is suffice to show that the map C[B] → C[A]∗ is surjective.
Recall that we view ai ∈ A and bj ∈ B as basis vectors for C[A] and C[B].
Let ai be the dual basis for C[A]∗. It is suffice to see that the image of the
map

C[B]→ C[A]∗ (3.3.20)

contains basis vectors ai. Equivalently, exists vectors vi ∈ C[B] so that

αµ(ai′ , vi) = δi,i′ . (3.3.21)

We first do this for the identity element e ∈ A. We take

ve =
1

|B|
∑
j

bj . (3.3.22)

Then

αµ(ai, ve) =
1

|B|
∑
j

µ(ai, bj). (3.3.23)
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For ai 6= e, we have ∑
j

µ(ai, bj) = 0, (3.3.24)

as we sum over values of all the character at a non-identity element ai. For
ai = e, then

αµ(e, ve) =
1

|B|
∑
j

µ(e, bj) (3.3.25)

=
1

|B|
∑
j

1 (3.3.26)

= 1. (3.3.27)

Thus ve satisfies Equation 3.3.21 above. Now for a general ai, then we let

vi =
1

|B|
∑
j

µ(a−1
i , bj) · bj . (3.3.28)

Same calculation shows that vi satisfies Equation 3.3.21.
For the converse, if the pairing is nondegenerate, then

C[B] ' C[A]∗ ' C[Â]. (3.3.29)

The composition C[B]
∼−→ C[Â] is induce by the homomorphism φµ : B → Â.

As the map of vector spaces is an isomorphism, so is the homomorphism of
groups.

Corollary 3.3.30. µ exhibits B as the Pontryagin dual of A iff the map

C[A]→ C[B]

a 7→
∑
b

µ(a, b) b (3.3.31)

is an isomorphism.

We have a natural transformation id → D̂2 of functors Ab → Ab. This
natural transformation is given as such: let A be an abelian group, then

A→ ˆ̂
A

a 7→ (α 7→ α(a)).
(3.3.32)
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Theorem 3.3.33. Restricted to Abfin, this natural transformation is an
isomorphism. Thus D̂2 ' id.

Proof. I claim the pairing (−,−)A : Â × A → C× exhibits A as the Pon-
tryagin dual of Â. By Proposition 3.3.17, we see that this is equivalent to
αµ : C[A] ⊗ C[Â] → C being a nondegenerate pairing. For finite dimen-
sional vector spaces, the nondegeneracy condition is symmetric. Thus A is
canonically isomorphic to the Pontryagin dual of Â.

As a Corollary, we get that Pontryagin duality is in fact a duality on
finite abelian groups:

Corollary 3.3.34. D̂ : Abfin → (Abfin)op is an equivalence of categories.

3.4 Brown-Comenetz duality

In this section we review Brown-Comenetz duality for spectra. This
duality is originally introduced in [4].

Let Sp be the category of spectra and Ab be the category of abelian
groups. They have internal homs Maps and Hom respectively. We have
the following proposition:

Proposition 3.4.1. Let K be an injective abelian group. Then there ex-
ists an essentially unique spectrum IK with the following property: for any
spectra X , there is a functorial equivalence

π−∗(Maps(X , IK)) ' Hom(π∗(X ),K). (3.4.2)

More precisely, we view both sides as families of functors Sp → Ab, and
we claim that there is a natural isomorphism between these two families of
functors.

Proof. Apply Σ−∗ to X on both sides, we reduce the Proposition down to
the case where ∗ = 0.

We want to apply Brown’s representability theorem ([17, Theorem 1.4.1.2])
applied to the functor

F : Spop
π0−→ Abop

Hom(−,K)−−−−−−−→ Ab
fgt−−→ Set. (3.4.3)

This takes a spectrum X to F (X ) := Hom(π0(X ),K). We need to show
that this functor satisfies the following conditions:

1. For every collection of spectra Xβ, the map F (
∐
β Xβ)→

∏
β F (Xβ) is

a bijection.
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2. For every pushout square

X Y

Z W

(3.4.4)

in Sp, the induced map F (W)→ F (Y)×F (Z) F (Z) is surjective.

We will first proof (1): π0 takes coproducts in spectra to coproducts (direct
sums) in Ab, Hom(−,K) takes colimits to limits, and the forgetful functor
preserves limits. Thus F takes coproducts to products.

For (2): as Sp is stable, a pushout diagram 3.4.4 is also a pullback
diagram. Therefore we have a Mayer-Vietoris long exact sequence:

· · ·π0X → π0Y ⊕ π0Z → π0W · · · (3.4.5)

The exactness at π0Y ⊕ π0Z implies that the natural map

π0Y ⊕π0X π0W → π0Z (3.4.6)

is injective.
As K is injective, Hom(−,K) takes an injective map to a surjective

map (this is where the injectivity of K is needed). In addition, the forgetful
functor preserves surjectivity. We see that F (W) → F (Y) ×F (Z) F (Z) is
surjective.

Now apply Brown’s representability theorem ([17, Theorem 1.4.1.2]) to
F , we get a spectrum IK with functorial equivalence

π0(Maps(−, IK)) ' Hom(π0(−),K), (3.4.7)

where we view both sides as functors Sp → Set. To recover the group
structure, note that Sp is an additive category, therefore the group structure
is forced upon IK.

Example 3.4.8. As C× is an injective abelian group, we get a spectrum IC×
with the functorial equivalence

π−∗(Maps(X , IC×)) ' π̂∗(X ). (3.4.9)

Recall that (̂−) is the Pontryagin dual.

We define the Brown-Comenetz dual spectrum as follows:
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Definition 3.4.10. Let X be a spectrum. The Brown-Comenetz dual spec-
trum X̂ is defined to be the mapping spectrum Maps(X , IC×).

This defines a functor

D̂ := Maps(−, IC×) : Sp→ Spop. (3.4.11)

Example 3.4.12. Let X be the sphere spectrum S. Then

Ŝ = Maps(S, IC×) ' IC×. (3.4.13)

Therefore IC× is the Brown-Comenetz dual of the sphere spectrum S. This
is similar to the fact that C× is the Pontryagin dual group of Z.

Remark 3.4.14. The common approach to Brown-Comenetz uses IQ/Z rather
than IC×. As with the abelian group case (see Remark 3.3.3), they give the
same answers on π-finite spectra. We use IC× over IQ/Z because the target
of our TFTs are complex-valued and IC× is a natural target for invertible
TFTs (see [10]).

We can calculate the homotopy groups of IC×. Let S be the sphere
spectrum, by Proposition 3.4.1, we have

π−i(Maps(Ŝ, IC×)) = π−iIC× ' π̂iS. (3.4.15)

Therefore
π0IC× = π̂0S = Hom(Z,C×) = C×. (3.4.16)

The negative homotopy groups

π−iIC× = π̂iS (3.4.17)

are finite abelian groups (non-canonically isomorphic the i-th homotopy
group of the sphere spectrum), and the positive homotopy groups are trivial.
We see that IC× is a co-connective spectra, and there is a canonical map

HC× ' τ≥0IC× → IC×, (3.4.18)

where HC× is the Eilenberg-MacLane spectrum of C×.
Let X be a spectrum and X̂ = Maps(X , IC×) its Brown-Comenetz dual.

We have the canonical pairing

evX : X ∧ X̂ → IC×. (3.4.19)

We use this to give a universal characterization of X̂ :
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Construction 3.4.20. Let X , Y be two spectra with a pairing

µ : X ∧ Y → IC×. (3.4.21)

Let Z be another spectra. We denote

X ∗(Z) := π−∗(Maps(Z,X )), (3.4.22)

and
X∗(Z) := π∗(Z ∧ X ). (3.4.23)

Consider the composition:

Z ∧ X ∧Maps(Z,Y)
∼−→ X ∧ (Z ∧Maps(Z,Y)) (3.4.24)
evZ−−→ X ∧ Y (3.4.25)
µ−→ IC× (3.4.26)

In general, there is a map

π∗(Z1)⊗ π−∗(Z2)→ π0(Z1 ∧ Z2). (3.4.27)

Apply to our case, we get

X∗(Z)⊗ Y∗(Z) = π∗(Z ∧ X )⊗ π−∗Maps(Z,Y)

→ π0(Z ∧ X ∧Maps(Z,Y))

→ π0(IC×)

' C×.

(3.4.28)

We see that there is a natural transformation

φµ(−) : Y∗(−)→ X̂∗(−), (3.4.29)

here Y∗(−), X̂∗(−) are viewed as functors Sp → Abop. X̂∗(−) is the com-
position of X∗(−) : Sp → Ab and D̂ : Ab → Abop the Pontryagin dual
functor.

Definition 3.4.30. The pairing µ : X ∧Y → IC× exhibits Y as the Brown-
Comenetz dual of X if the natural pairing (Equation 3.4.28)

X∗(Z)⊗ Y∗(Z)→ C× (3.4.31)

exhibits Y∗(Z) as the Pontryagin dual group of X∗(Z) for every Z. Alter-
natively, the map

φµ(Z) : Y∗(Z)→ X̂∗(Z) (3.4.32)

is an isomorphism for every Z ∈ Sp.
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This gives an universal characterization of the Brown-Comenetz dual
spectrum:

Proposition 3.4.33. Let Y = X̂ , and µ = evX : X ∧ X̂ → IC×. Then µ
exhibits X̂ as the Brown-Comenetz dual of X .

Proof. Let Z ∈ Sp be a spectrum. We have

Maps(Z, X̂ ) = Maps(Z,Maps(X , IC×)) (3.4.34)
∼−→Maps(Z ∧ X , IC×). (3.4.35)

Thus we have
X̂ ∗(Z)

∼−→ π−∗(Maps(Z, X̂ ))
∼−→ π−∗(Maps(Z ∧ X , IC×))
∼−→ ̂π∗Z ∧ X

= X̂∗(Z)

(3.4.36)

We used Proposition 3.4.1 in the last arrow.

Remark 3.4.37. This proof essentially only uses the corresponding property
of IC× (Equation 3.4.9). This is a theme in duality theorems.

Corollary 3.4.38. πi(X̂ ) ' π̂−iX .

Example 3.4.39. Let A be an abelian group, HA its Eilenberg MacLane
spectrum. Then the Brown-Comenetz dual spectrum ĤA has homotopy
groups concentrated in degree 0, and π0(ĤA) ' Â (Â is the Pontryagin

dual group). Therefore ĤA ' HÂ. For generally, the Brown-Comenetz
dual of ΣnHA is Σ−nHÂ.

Proof. Let Z be the sphere spectrum S, then Equation 3.4.36 above gives
the equivalence.

Let N be a topological space and X a spectrum. We have the nonreduced
homology X∗ and cohomology X ∗ associated to X:

X∗(N) := X∗(Σ∞+ N) X ∗(N) := X ∗(Σ∞+ N), (3.4.40)

where Σ∞+ N is the suspension spectrum associated to N .
We have the following corollary:
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Corollary 3.4.41. When a pairing µ : X ∧ Y → IC× exhibits Y as the
Brown-Comenetz dual of X , we have an equivalence of cohomology theory

Ŷ∗(−)→ X̂∗(−). (3.4.42)

Given a cofiber sequence N →M → (M,N), we have the long exact sequence
of homology groups:

· · · → X∗(N)→ X∗(M)→ X∗(M,N)→ · · · , (3.4.43)

then its Pontryagin dual long exact sequence (apply D̂ term-by-term) is
canonically isomorphic to the long exact sequence of cohomology groups:

· · · ← Ŷ∗(N)← Ŷ∗(M)← Ŷ∗(M,N)← · · · . (3.4.44)

Recall that we have the Pontryagin dual map D̂ : Ab → Ab, and the
embedding of Eilenberg-MacLane spectra H : Ab → Sp. By the Example
3.4.39, we have a commutative diagram of functors:

Ab Abop

Sp Spop.

D̂

H Hop

D̂

(3.4.45)

Now we turn to π-finite spectra. Let Spfin ⊂ Sp be the full subcategory
of π-finite spectra and Abfin ⊂ Ab the full subcategory of finite abelian
groups. The Eilenberg-MacLane functor restricts to a functor

H : Abfin → Spfin. (3.4.46)

By Corollary 3.4.38, the Brown-Comenetz duality functor restricts to a func-
tor

D̂ : Spfin → (Spfin)op. (3.4.47)

Therefore we have the following commutative diagram:

Abfin (Abfin)op

Spfin (Spfin)op.

D̂

H Hop

D̂

(3.4.48)
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By Theorem 3.3.33, D̂ is a duality for finite abelian groups: D̂2 ' id. We
will show the same for π-finite spectra: there is a natural transformation
id→ D̂2, given by

X → ˆ̂X = Maps(Maps(X , IC×), IC×)

x 7→ (α 7→ α(a)).
(3.4.49)

Restricts to π-finite spectra, we have the following:

Theorem 3.4.50. For π-finite spectrum X , the natural map 3.4.49 is an
isomorphism. Therefore, we have an equivalence of functors

D̂2 ' id : Spfin → Spfin. (3.4.51)

Proof. By Theorem 3.3.33, we know that our theorem is true when X = HA.
As π-finite spectra is generated finite Eilenberg-MacLane spectra HA under
extensions (Proposition 3.3.14), it is suffice to show that

1. if X ' D̂2(X ) =
ˆ̂X , so does ΣnX .

2. if X0 ' D̂2(X0), X2 ' D̂2(X2), and we have a fiber sequence

X0 → X1 → X2, (3.4.52)

then X1 ' D̂2(X1).

(1) follows from the observation Σ̂nX ' Σ−nX̂ . For (2), there is map of
long exact sequences of homotopy groups:

· · · π∗X ′ π∗X π∗X ′′ · · ·

· · · π∗
ˆ̂X ′ π∗

ˆ̂X π∗
ˆ̂X ′′ · · ·

αX′ αX αX′′ (3.4.53)

As αX ′ and αX ′′ are isomorphisms, the 2-out-of-3 lemma implies that so is
αX . Recall that a map of spectra is an equivalence if all the induced maps
on homotopy groups are isomorphisms.

Theorem 3.4.50 shows that taking the Brown-Comenetz dual is a duality
on π-finite spectra:

Corollary 3.4.54. D̂ : Spfin → (Spfin)op is an equivalence of categories.
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Lastly, we have the following corollary:

Corollary 3.4.55. Let X be a π-finite spectra and N → M → M/N a
cofiber sequence of finite CW complexes. The Pontryagin dual of the long
exact sequence of cohomology group with X coefficients:

· · · → X ∗(M,N)→ X ∗(M)→ X ∗(N)→ · · · (3.4.56)

is canonically isomorphic to the long exact sequence of homology group with
X̂ coefficients:

· · · ← X̂∗(M,N)← X̂∗(M)← X̂∗(N)← · · · (3.4.57)

Proof. As X̂ is a π-finite spectra, by Theorem 3.4.50 the Brown-Comenetz
dual of X̂ can be identified with X . Now apply Corollary 3.4.41 the Brown-
Comenetz dual pair (X̂ ,X ), we get that the Pontryagin dual of the long
exact sequence

· · · ← X̂∗(M,N)← X̂∗(M)← X̂∗(N)← · · · (3.4.58)

is canonically isomorphic

· · · → X ∗(M,N)→ X ∗(M)→ X ∗(N)→ · · · . (3.4.59)

As M,N,M/N are finite CW complexes, all homology and cohomology
groups above are finite. As Pontryagin duality is a duality on finite abelian
groups (theorem 3.3.33), we see that the Pontryagin dual of long exact
sequence 3.4.59 is canonically isomorphic to long exact sequence 3.4.58.
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4 Euler characteristic and Euler TFTs

In §4.1 we review the Euler characteristic of a manifold, and the size of
a π-finite spectra. In §4.2 we define the Euler TFT (in any dimension) and
show that the Euler TFT is trivial in odd dimensions.

4.1 Euler characteristic

In this section we collect some facts about the Euler characteristics of
(compact) manifolds and the sizes (homotopy cardinality) of π-finite spectra.
We first start with the Euler characteristic of a finite graded vector space:

Definition 4.1.1. Let k be a field and H• =
⊕
H i be a Z-graded k-vector

space. H• is called finite if all but finitely many H i are trivial and each H i

is finite dimensional. The Euler character χ(H•) of a finite graded vector
space H• is

χ(H•) :=
∑
i

(−1)idimk Hi. (4.1.2)

Here’s a similar notion for finite graded abelian groups:

Definition 4.1.3. Let A• =
⊕
Ai be a Z-graded abelian group. A• is called

finite if all but finitely many Ai are trivial and each Ai is a finite abelian
group. The size of A• is

|A•| :=
∏
i

|Ai|(−1)i , (4.1.4)

where |Ai| is the cardinality of Ai.

In this section, all graded vector spaces and graded abelian groups will
satisfy the finiteness assumption above, and we will implicitly assume this
condition throughout the section.

Remark 4.1.5. If H• =
⊕
H i is a finite graded Fq vector space, where Fq is

the finite field of cardinality q, then H• is also a finite graded abelian group
with size

|H| = qχ(H). (4.1.6)

A large class of example of graded k-vector spaces comes from chain
complexes:

Definition 4.1.7. Let

C∗ : · · · → Ci → Ci+1 → · · · (4.1.8)
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be a cochain complex of k-vector spaces. It is called finite if it is finite when
considered as a graded vector space. Its Euler characteristic χ(C∗) is the
Euler characteristic defined above for finite graded vector spaces.

Given C∗ a finite cochain complex of k-vector space, then its cohomology
H∗ is a finite graded k-vector space and it has Euler characteristic χ(H∗).
The next proposition shows they are the same:

Lemma 4.1.9. Let C∗ be a finite cochain complex of k-vector spaces, H∗

its cohomology. Then χ(C∗) = χ(H∗).

Proof. Let di : Ci → Ci+1 denote the i-th differential. We have a (non-
canonical) decomposition

Ci ' im(di)⊕H i ⊕ im(di−1). (4.1.10)

Thus

χ(C∗) =
∑
i

(−1)idim(Ci) (4.1.11)

=
∑
i

(−1)i(dim(im(di)) + dimH i + dim(im(di−1) (4.1.12)

=
∑
i

(−1)i(dimH i) (4.1.13)

= χ(H∗). (4.1.14)

Remark 4.1.15. A similar argument works for a finite cochain complex of
abelian groups. In that case there will not be a splitting like Equation 4.1.10.
However, there are still short exact sequences.

The notion of Euler characteristic also behaves well with long exact se-
quences:

Lemma 4.1.16. Given an exact sequence of graded k-vector spaces H•0 →
H•1 → H•2 , that is, a long exact sequence

· · · → H∗0 → H∗1 → H∗2 → H∗+1
0 → · · · , (4.1.17)

then
χ(H) + χ(H ′′) = χ(H). (4.1.18)

A similar result holds for exact sequences of finite graded abelian groups and
their sizes.
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Proof. We will work with finite k-vector spaces. The finite abelian groups
case follows from the same argument. Consider the entire long exact se-
quence 4.1.17 as a chain complex K∗. It is exact H∗(K) = 0. By Lemma
4.1.9, we see that χ(K) = 0. However,

χ(K) = χ(H0) + χ(H2)− χ(H1). (4.1.19)

Thus
χ(H0) + χ(H2) = χ(H1). (4.1.20)

Now we can define the Euler characteristic of a (compact) manifold:

Definition 4.1.21. Let M be a (compact) manifold and k a field. Then
the cohomology of M (with k coefficients) is a finite graded k vector spaces
H∗(M,k). The Euler characteristic χ(M) is defined to be χ(H∗(M,k)).

Remark 4.1.22. As

H∗(M,k) = Homk(H∗(M,k), k), (4.1.23)

we see that χ(H∗(M,k)) = χ(M), that is, homology groups also compute
the Euler characteristic of M .

Note that there is no mention of k in the notation of χ(M), this is due
to the following lemma:

Lemma 4.1.24. χ(H∗(M,k)) is independent of k.

Proof. There is a finte CW complex X homotopy equivalent to M . The CW
cochain complex C∗(X,Z) is a bounded cochain complex of free Z-modules
of finite rank with cohomology H∗(M,Z). Furthermore,

C∗(M,k) := C∗(M,Z)⊗ k (4.1.25)

is a finite k-cochain complex that computes H∗(M,k). By lemma 4.1.9, we
see that

χ(H∗(M,k)) = χ(C∗(M,k)) (4.1.26)

=
∑
i

(−1)i dimk(C
∗(M,Z⊗ k)) (4.1.27)

=
∑
i

(−1)i rank(C∗(M,Z)). (4.1.28)
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The last equation is true because each Ci are free Z-modules of finite rank.
rank is the usual notion of rank of an finitely generated Z-modules. As∑

i

(−1)i rank(C∗(M,Z)) (4.1.29)

is independent of k, so is
χ(H∗(M,k)). (4.1.30)

The Euler characteristic also behaves well with composition of bordisms:

Lemma 4.1.31. Given closed (d − 1)-manifolds N , N ′, N ′′, and bordisms
M : N → N ′ and M ′ : N ′ → N ′′, the composition M tN ′ M ′ has

χ(M tN ′ M ′) = χ(M) + χ(M ′)− χ(N ′). (4.1.32)

Proof. We have a Mayer Vietoris sequence

· · · → H∗(M tN ′ M ′)→ H∗(M)⊕H∗(M ′)→ H∗(N ′)→ · · · (4.1.33)

By Lemma 4.1.16, we get

χ(M tN ′ M ′) + χ(N ′) = χ(M) + χ(M ′). (4.1.34)

Similar to the Euler characteristic of M , we can define the size (also
called the homotopy cardinality) of a π-finite spectrum:

Definition 4.1.35. If X is a π-finite spectrum, then π•(X ) = πi(X ) is a
finite graded abelian group. The size of X , denoted as |X |, is defined to be
|π•(X )|.

The sizes of π-finite spectra behave well with fiber sequences:

Proposition 4.1.36. Given a fiber sequence X → Y → Z, we have that
|X | |Z| = |Y|.

Proof. Apply Proposition 4.1.16 apply to the long exact sequence

· · · → π∗(X )→ π∗(Y)→ π∗(Z)→ · · · (4.1.37)
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Example 4.1.38. Let X be a π-finite spectrum. We have a fiber sequence

τ≥iX → X → τ≤i−1X (4.1.39)

of π-finite spaces. By Proposition 4.1.36 we have

|τ≥iX| |τ≤i−1X| = |X |. (4.1.40)

Let M be a manifold and X a π-finite spectrum. Then the mapping
spectrum

X (M) := Maps(Σ∞+ M,X ), (4.1.41)

is a π-finite spectrum (Lemma 3.3.7) with homotopy groups

πi(X (M)) = X−i(M), (4.1.42)

where X i(M) is the i-th generalized cohomology group of M with coefficients
X . Thus

|X (M)| = · · · |X
0(M)|

|X−1(M)|
|X 2(M)|
|X 1(M)|

· · · . (4.1.43)

The size of |X (M)| is related to the size of |X | and the Euler character-
istic of M :

Proposition 4.1.44. |X (M)| = |X |χ(M).

Proof. By Proposition 3.3.14 and the fact that every finite abelian group is
a finite extension of Z/pZ = Fp’s, we see that Sfin is generated by HFp by
finite extensions and (de)suspensions.

First we look at the case X = HFp. As noted in Remark 4.1.5,

|X (M)| =
∏
i

|H i(X,Fp)|(−1)i (4.1.45)

=
∏
i

p(−1)idim Hi(M,Fp) (4.1.46)

= pχ(M) (4.1.47)

= |X |χ(M). (4.1.48)

Next, if the hypothesis holds for X , it also holds for ΣX :

|ΣX (M)| = |X (M)|−1 (4.1.49)

= |X |−χ(M) (4.1.50)

= (|X |−1)χ(M) (4.1.51)

= |ΣX|χ(M). (4.1.52)
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Same thing holds for desuspension.
If we have a fiber sequence

X → Y → Z, (4.1.53)

then we also have a fiber sequence of π-finite spectra

X (M)→ Y(M)→ Z(M). (4.1.54)

If X ,Z satisfies the hypothesis, then

|Y(M)| = |X (M)| |Z(M)| (4.1.55)

= |X |χ(M) |Z|χ(M) (4.1.56)

= (|X | |Z|)χ(M) (4.1.57)

= |Y|χ(M). (4.1.58)

The first and last equality is due to Proposition 4.1.36.
Lastly, as the proposition holds for HFp, 0 (Remark 4.1.5), and remains

true under suspensions and extensions, it holds for any π-finite spectrum.

4.2 Euler TFT

In this section we define the Euler TFT, and show that it is trivial in
odd dimensions.

Definition 4.2.1. Let λ ∈ C× be a nonzero complex number, then we define
the d-dimensional Euler TFT Eλ as follows: for any closed (d− 1)-manifold
N ,

Eλ(N) := C. (4.2.2)

For a bordism M : N → N ′,

Eλ(M) : C→ C (4.2.3)

is given by multiplication by λχ(M)−χ(N) ∈ C×.

We have to check that the Eλ behaves well with compositions, which
boils down this following lemma:

Lemma 4.2.4. Given closed (d − 1)-manifolds N , N ′, N ′′ and bordisms
M : N → N ′ and M ′ : N ′ → N ′′, then

χ(M tN ′ M ′)− χ(N) = χ(M)− χ(N) + χ(M ′)− χ(N ′). (4.2.5)
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Proof. By Lemma 4.1.31 we have

χ(M tN ′ M ′) = χ(M) + χ(M ′)− χ(N ′). (4.2.6)

Thus

χ(M tN ′ M ′)− χ(N) = χ(M) + χ(M ′)− χ(N ′)− χ(N) (4.2.7)

= χ(M)− χ(N) + χ(M ′)− χ(N ′). (4.2.8)

Example 4.2.9. Let λ 6= 1,−1. In even dimensions d = 2n, the d-dimensional
sphere Sd has Euler characteristic χ(Sd) = 2. Therefore Eλ(Sd) = λ2 6= 1.
We see that the d-dimensional Euler TFT Eλ is nontrivial. As Sd is oriented,
Eλ is also nontrivial as an oriented TFT.

In odd dimensions, by Poincaré duality (with F2 coefficients), the Eu-
ler characteristic of a closed d-manifold is 0. In fact we have a stronger
statement:

Proposition 4.2.10. Let d be odd. For any λ ∈ C×, the d-dimensional
unoriented TFT is trivial, that is, Eλ ' Ztriv.

Proof. To show that Eλ ' Ztriv, we have to give an natural isomorphism
α : Eλ

∼−→ Ztriv between the two functors. First let’s see what kind of data
is needed for such α and what conditions it needs to satisfy:

For every closed (d-1)-manifold N , we need

α(N) : Ztriv(N) = C ∼−→ C = Eλ(N), (4.2.11)

which sends 1 ∈ C = Ztriv(N) to a nonzero elements

αN := α(N)(1). (4.2.12)

α also needs to satisfy the following compatibility condition: given a bordism
M : N → N ′, we need a commutative diagram

Ztriv(N) Ztriv(N
′)

Eλ(N) Eλ(N ′).

Ztriv(M)

α(N) α(N ′)

Eλ(M)

(4.2.13)

Tracking where
1 ∈ C = Ztriv(N) (4.2.14)
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goes, we see that we need to show that

αN ′ = λχ(M)−χ(N)αN . (4.2.15)

I claim that for
αN = λ

1
2
χ(N), (4.2.16)

Equation 4.2.15 is satisfied. This is equivalence to show that

χ(M) =
1

2
(χ(N) + χ(N ′)) =

1

2
χ(∂M). (4.2.17)

Let k = F2. As every manifold is k-oriented, we have Poincare duality
(Corollary 3.2):

H∗(M,k) ' Hd−∗(M,∂M, k). (4.2.18)

As d is odd, we see that

χ(M) = χ(H∗(M,k)) (4.2.19)

= χ(Hd−∗(M,∂M, k)) (4.2.20)

= −χ(H∗(M,∂M, k) (4.2.21)

= −χ(M,∂M), (4.2.22)

Finally, consider the long exact sequence associated to the cofiber sequence
∂M →M →M/∂M :

· · · → H∗(M,∂M, k)→ H∗(M)→ H∗(N)→ · · · .

By Lemma 4.1.31, we see that

χ(M) = χ(M,∂M) + χ(∂M) (4.2.23)

= −χ(M) + χ(∂M). (4.2.24)

Thus

χ(M) =
1

2
χ(∂M). (4.2.25)
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5 Abelian duality

Fix dimension d ≥ 1 of our theories. Given any π-finite space X, there
is a d-dimensional unoriented finite homotopy TFT ZX : Bordd → V ectC
(§2.4). For a π-finite spectrum X , its underlying space Ω∞X is a π-finite
space. We define the d-dimensional unoriented finite homotopy TFT asso-
ciated to X as

ZX := ZΩ∞X : Bordd → V ectC. (5.0.1)

In §3.4, we defined the Brown-Comenetz dual spectrum X̂ of X . It is also
a π-finite spectra. Now assume that we have a E1-ring spectrum R and X
is a right-R module spectrum. Note that X̂ gets a left R-module structure.
There is a category of R-oriented bordism BordRd . It has a forgetful map

BordRd → Bordd. (5.0.2)

We can use this map to pullback unoriented theories to R-oriented theories.
The theories of interests are R-oriented theories

ZX , ZΣd−1X̂ : BordRd → Bordd → V ectC (5.0.3)

associated to X and Σd−1X̂ .
Let λ be a nonzero complex number, then the Euler TFT Eλ (§4.2) is

a d-dimensional invertible field theory, which we also view as a R-oriented
theory. Here’s the main theorem of the thesis:

Theorem 5.0.4 (Abelian duality). There is an equivalence of R-oriented
TFTs:

D : ZX ∼= ZΣd−1X̂ ⊗ E|X |. (5.0.5)

This section is devoted to stating and proving Theorem 5.0.4. In §5.1
we define the finite homotopy TFT ZX for any π-finite spectrum X and
do some basic computations. In §5.2 we define the R-oriented bordism
categoryBordRd for any ring spectrumR. In §5.3 we proof the main theorem,
borrowing two lemmas 5.3.26 and 5.3.27. In §5.4 we apply Theorem 5.0.4 to
gauge theories in low dimensions. In §5.5 we proof Lemma 5.3.26. In §5.6
we proof Lemma 5.3.27.

5.1 Finite homotopy TFTs for π-finite spectra

Let S, Sp be the categories of spaces and spectra. We have the underlying
space functor Ω∞ : Sp → S. If X is a π-finite spectrum, then Ω∞X is a
π-finite space. In §2.4 we defined the d-dimensional finite homotopy TFT
ZX associated to any π-fintie space X.
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Definition 5.1.1. The d-dimensional finite homotopy TFT associated to
π-finite spectrum X is

ZX := ZΩ∞X : Bordd → V ectC (5.1.2)

ZX doesn’t not see the non-connective part of X , as

Ω∞X ' Ω∞(τ≥0X ). (5.1.3)

We can think about X as a generalized cohomology theory, with

X n(N) := π−n(Maps(Σ∞+ N,X )). (5.1.4)

We also use X (N) to denote the mapping spectrum Maps(Σ∞+ N,X ).
Let N be a closed (d− 1)-manifold, then

ZX (N) = ZΩ∞X (N) (5.1.5)

= C[π0(Maps(N,Ω∞X ))] (5.1.6)

= C[π0(Maps(Σ∞+ N,X ))] (5.1.7)

= C[X 0(N)] (5.1.8)

The states of the finite homotopy TFT associated to X are related to the
cohomology theory with X coefficients.

Example 5.1.9. Let A be a finite abelian group, and HA its Eilenberg-
MacLane spectrum. For n ≤ 0, we have

Ω∞ΣnHA = ∗ (5.1.10)

and the theory associated to ΣnHA is trivial. When n ≥ 0, we have

Ω∞ΣnHA = K(A,n) (5.1.11)

is the n-th Eilenberg-MacLane space. For N a closed (d − 1)-manifold, by
Equation 5.1.5, we see that

ZΣnHA(N) = C[ΣnHA0(N)] = Hn(N,A). (5.1.12)

This is a theory that counts n-principal A bundles. ZΣnHA is the topological
analogue of the n-form gauge theories (§1.2), where the gauge group is A.

Given a bordism M : N → N ′. We have

ZX (M) : ZX (N)→ ZX (N ′). (5.1.13)

By Equation 5.1.5, it is

ZX (M) : C[X 0(N)]→ C[X 0(N ′)]. (5.1.14)

There is a formula for this map:
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Proposition 5.1.15. Let a, b, a′ denote the elements of X 0(N), X 0(M),
X 0(N ′), we also view them as basis vectors for the correspond vector spaces.
Under

ZX (M) : C[X 0(N)]→ C[X 0(N ′)], (5.1.16)

we have

a 7→ |τ≥1X (M)|
|τ≥1X (N ′)|

∑
b→a

q∗b (5.1.17)

=
|τ≥1X (M)|
|τ≥1X (N ′)|

∑
a′

∑
b→a,b→a′

a′, (5.1.18)

where
∑

a means sum over all a ∈ X 0(N),
∑

b→a means sum over all b ∈
X 0(M) such that b maps to a.

Proof. Consider the span of π-finite spaces:

Maps(M,Ω∞X )

Maps(N,Ω∞X ) Maps(N ′,Ω∞X ).

p q (5.1.19)

Recall that
ZX (M) : C[X 0(N)]→ C[X 0(N ′)] (5.1.20)

is defined to be the composition q∗ ◦ p∗. First we compute p∗:

p∗ : C[X 0(N)]→ C[X 0(M)] (5.1.21)

a 7→
∑
b→a

b. (5.1.22)

For q∗, we need to understand the homotopy groups of Maps(M,Ω∞X ) and
Maps(N ′,Ω∞X ). For π0, we have

π0(Maps(M,Ω∞X )) = X 0(M). (5.1.23)

For any x ∈Maps(M,Ω∞X , we have

πn(Maps(M,Ω∞X ), x) ' πn(Maps(M,Ω∞X ), ∗) = πn(X (M)). (5.1.24)

This is because Maps(M,Ω∞X ) = Ω∞X (M) is an infinite loop space and
all the connected components of Maps(M,Ω∞X ) are isomorphic to each
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other. ∗ is the constant map to the basepoint of Ω∞X . The same is true for
Maps(N ′,Ω∞X ). Thus

q∗ : C[X 0(M)]→ C[X 0(N ′)]

b 7→ |π1(Maps(N ′,Ω∞X ))|
|π1(Maps(M,Ω∞X ))|

|π2(Maps(M,Ω∞X ))|
|π2(Maps(N ′,Ω∞X ))|

· · · q∗b

=
|τ≥1X (M)|
|τ≥1X (N ′)|

q∗b.

(5.1.25)

Composing p∗ and q∗, we get:

ZX (M) : a 7→
∑
b→a

b (5.1.26)

7→ |τ≥1X (M)|
|τ≥1X (N ′)|

∑
b→a

q∗b (5.1.27)

=
|τ≥1X (M)|
|τ≥1X (N ′)|

∑
a′

∑
b→a,b→a′

a′. (5.1.28)

5.2 R-oriented bordism category

LetR be a E1-ring spectrum. In this section, we define the d-dimensional
R-oriented bordism category BordRd and R-oriented TFTs. First we recall
the notion of R-orientation for a manifold M (see §3.4):

Definition 5.2.1. Let M be a d-manifold, R a E1-ringed spectrum. Then
an R-orientation on M is a homology class [M ] ∈ Rd(M,∂M) such that,
for every interior point x ∈Mo, the image of [M ] under

Rd(M,∂M)→ Rd(M,M − x) ' π0(R) (5.2.2)

is an multiplicative unit in the ring π∗(R).

From now on, we will say orientation for R-orientation unless explicitly
said otherwise.

IfN is a closed (d−1)-manifold, then an orientation [N ] lives inRd−1(N).
If [N ] ∈ Rd−1(N) is an orientation, then so is −[N ] ∈ Rd−1(N).

Let N and N ′ be two closed (d − 1)-manifold, and M : N → N ′ is
a bordism. An R orientation [M ] on M , by Proposition 3.2.41, gives an
orientation on ∂M ' N tN ′ via the boundary map

Rd(M,∂M)→ Rd−1(∂M). (5.2.3)

Thus an orientation [M ] on M gives an orientation to both N and N ′.
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Definition 5.2.4. Let N and N ′ be oriented closed (d− 1)-manifolds with
orientation [N ] and [N ′]. Then an oriented bordism is a bordism M : N →
N ′ with an orientation [M ] that restricts to [N ] on N and −[N ′] on N ′. An
isomorphism between oriented bordisms is an isomorphism of the underlying
unoriented bordisms that is compatible with the orientation classes on the
bordisms.

We need a minus sign on −[N ′] for the oriented bordisms the compose:

Proposition 5.2.5. Given two oriented bordisms M : N → N ′ and M ′ :
N ′ → N ′′, the composition M tN ′M ′ has a canonical orientation and is an
oriented bordism from N to N ′′.

Proof. We just have to show that we can glue the two orientation class [M ]
and [M ′] to an orientation class [M tN ′M ′] on M tN ′M ′. As M and M ′ are
glued at N ′, we just have to do that locally. Locally at N , M and M ′ looks
like cylinders N ′ × I, where I is the interval. The N ′ × I has a canonical
orientation that restricts to [N ] on N×0 and −[N ] on N×1 (or vice-versa).
Two of these oriented cylinders N ′× I can glues to form a larger cylinder if
the orientation are reversed on the boundary they glue on. This is exactly
our situation.

Figure 2: Composing oriented bordism in the case N = +

As oriented bordisms compose, we can define the oriented bordism cat-
egory:

Definition 5.2.6. The d-dimensional R-oriented category BordRd is the
category with objects closed R-oriented (d − 1)-manifolds, and morphisms
are isomorphism classes of R-oriented bordisms. It is symmetric monoidal
under disjoint union.
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Example 5.2.7. Let R = HZ, then a HZ-orientation is the same as the usual
notion of orientation for manifolds. We denote the (HZ)-oriented bordism
category as Bordord .

Example 5.2.8. Let R = HZ/2Z. Every manifold is canonically HZ/2Z-

oriented in a unique way, so Bord
HZ/2Z
d = Bordd.

Example 5.2.9. Let R = S the sphere spectrum, then S-orientation is a
trivialization of the Thom spectra of the (stable) normal bundle. Since S is
the initial E1-ring spectrum, an S-orientation implies R-orientation for any
E1-ring spectrum R.

Remark 5.2.10. Framed manifolds are S-oriented. Thus they are R-oriented
for any E1-ring spectrum R.

Lastly, we can define R-oriented TFTs:

Definition 5.2.11. A R-oriented topological field theory Z is a symmetric
monoidal functor

Z : BordRd → V ectC (5.2.12)

Remark 5.2.13. There is a symmetric monoidal map BordRd → Bordd by
forgetting the orientation structure. Therefore any unoriented TFT gives
an R-oriented TFT.

5.3 Main theorem

Let d ≥ 1 be the dimension of our theory. Let R be a E1-ring spectrum
and X a π-finite right R-module spectrum. The Brown-Comenetz dual X̂
is a π-finite left R-module. In §5.1, we defined the d-dimensional finite
homotopy TFTs ZX and ZΣd−1X̂ associated to X and Σd−1X̂ . In addition,
if λ is a nonzero complex number, we have the d-dimensional Euler TFT Eλ
(§4.2.

In §5.2 we defined the bordism category BordRd of R-oriented manifolds
and bordisms. Any unoriented TFT can be viewed as a R-oriented TFT
by precomposing with the forgetful map BordRd → Bordd. We can view
ZX , ZΣd−1X̂ , E|X | as R-oriented theories.

Theorem 5.3.1 (Abelian duality). There is an equivalence of R-oriented
TFTs

D : ZX ' ZΣd−1X̂ ⊗ E|X |. (5.3.2)

Remark 5.3.3. In general, ZX and ZΣd−1X̂ ⊗ E|X | are not equivalent as un-
oriented theories, despite both sides can be extended to unoriented theories.
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This is because we need to use Poincaré duality in an essential way. For
example, they give different partition functions for the d = 2 theories on the
Klein bottle.

Remark 5.3.4. For reader familiar with the abelian duality between p and
(d−p−2)-form gauge theories (§1.2), it might seen strange that we suspend
Â side d−p−1 times. This means all the dualities are off by one dimension.
For example, in 2 dimension, T -duality swaps sigma models to S1. In 4
dimension, electromagnetic duality swaps U(1) gauge theories. However, as
will be discussed in §5.4, in this topological version, we have a duality of
sigma models in 1 dimension, and a duality of gauge theories in 3 dimension.

This is because the Pontryagin dual of U(1) is not U(1), but rather
Z. As U(1) = BZ we see that this off-by-one-dimension exactly cancels the
off-by-one-dimension above.

Here’s some consequences of the theorem:

Corollary 5.3.5. When d is odd, we have an equivalence of R-oriented
TFTs

ZX ' ZΣd−1X̂ . (5.3.6)

Proof. By Proposition 4.2.10, when d is odd, Eλ is isomorphic to the trivial
theory. Therefore ZX ' ZΣd−1X̂ .

As any manifold is HZ/2Z oriented. If X is a π-finite HZ/2Z-module,
then the main theorem 5.3.1 gives an equivalence of unoriented theories.
Note that right and left modules coincide as HZ/2Z is a E∞-ring spectrum.

Corollary 5.3.7. Let X be a π-finite HZ/2Z-module, then in d-dimension,
we have an equivalence of unoriented TFTs

D : ZX ' ZΣd−1X̂ ⊗ E|X |. (5.3.8)

HZ orientation is the same as the classical notion of orientation on man-
ifolds. Thus if X is a π-finite HZ-module, then we have an equivalence of
oriented theories. A large example of π-finite HZ-module are ΣnHA where
A is a finite abelian group. Their underlying space Ω∞ΣnHA is K(A,n) is
the n-th Eilenberg-MacLane space if n ≥ 0, and ∗ if n < 0. Apply Theorem
5.0.4, we get:

Corollary 5.3.9. Let A be a finite abelian group and Â the Pontryagin dual.
In d dimension, we have an equivalence of d-dimensional oriented TFTs:

ZK(A,n)
∼= ZK(Â,d−1−n) ⊗ E|K(A,n)|., (5.3.10)

when n < 0, K(A,n) = ∗.
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We will work out examples of Corollary 5.3.9 in §5.4. The rest of the
section is devoted to the proof of theorem 5.3.1:

Proof of Theorem 5.3.1. For the rest of the section, all manifolds, bordisms
are R-oriented. We will suppressed the R-orientation notations.

To give an equivalence, we will need to define an isomorphism of states

ZX (N)→ ZΣd−1X̂ ⊗ E|X |(N), (5.3.11)

and check that it is compatible with bordisms. As E|X |(N) = C, it is suffice
to give maps

D(N) : ZX (N)→ ZΣd−1X̂ (N). (5.3.12)

This is done as follows:

Construction 5.3.13. By Pontryagin duality, there is a pairing

evN (−,−) : X ∗(N)× X̂∗(N)→ C×. (5.3.14)

Note that this exist for any topological space N . As N is a (compact)
manifold, the homology and cohomology groups are finite. This pairing is
exhibits X ∗(N) and X̂∗(N) as Pontryagin dual of each other. Compose this
with the Poincaré duality isomorphism 3.2.45:∫

[N ]
: X̂ d−1−∗(N)

∼−→ X̂∗(N), (5.3.15)

we get a pairing

X ∗(N)× X̂ d−1−∗(N)→ C× (5.3.16)

(a, α) 7→ evN (a,

∫
[N ]

α) (5.3.17)

When ∗ = 0, we denote this pairing as

〈−,−〉N : X 0(N)× X̂ d−1(N)→ C×. (5.3.18)

It exhibits X 0(N) and X̂ d−1(N) as the Pontryagin dual of each other. Note
that this denotes on the orientation class of N , reversing the orientation
inverts this pairing.

Recall that
ZX (N) = C[X 0(N)] (5.3.19)

and
ZΣd−1X̂ (N) = C[X̂ d−1(N)]. (5.3.20)
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We will denote elements of X 0(N) as a, and X̂ d−1(N) as α, and view them
as basis vectors for ZX (N) and ZΣd−1X̂ (N) respectively. Now we can define
the isomorphism on states:

D(N) : C[X 0(N)]→ C[X̂ d−1(N)]

a 7→ |τ≥1X (N)|
∑
α

〈a, α〉N α. (5.3.21)

This is an isomorphism of vector spaces as the pairing 〈−,−〉N is nondegen-
erate (Corollary 3.3.30).

It remains to show that this intertwines with bordisms. Given M : N →
N ′ in Bordd, with the inclusion maps p : N ↪→ M and q : N ′ ↪→ M . We
have to show that the following diagram commute:

ZX (N) ZX (N ′)

ZΣd−1X̂ (N) ZΣd−1X̂ (N ′)

ZX (M)

D(N) D(N ′)

Z
Σd−1X̂ (M)∗|X |χ(M)−χ(N)

(5.3.22)

Note that we have canonically identified

ZΣd−1X̂ (N)⊗ E|X |(N) ' ZΣd−1X̂ (N). (5.3.23)

The factor
|X |χ(M)−χ(N) (5.3.24)

in the bottom arrow comes from

E|X |(M) : E|X |(N) = C→ C = E|X |(N
′). (5.3.25)

We will proof that diagram 5.3.22 commutes in two lemmas:

Lemma 5.3.26. D(N ′)◦ZX (M) and ZΣd−1X̂ (M)◦D(N) differ by a constant
λ(M).

Lemma 5.3.27. λ(M) = |X |χ(M)−χ(N).

The two lemmas are proven in §5.5 and §5.6 respectively.
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5.4 Examples in low dimensions

In this section we examine Corollary 5.3.9 in d = 1, 2, 3 dimension. We
will see how it recovers finite Fourier theory and character theory (for finite
abelian group) in low dimensions.

Let A be a finite abelian group, and Â its Pontryagin dual group. The
theories in consideration are the finite homotopy TFTs associated to shifts
of HA and HÂ.

Recall that in d dimension, the dual theories are ZΣnHA and ZΣd−1−nHA.
As

Ω∞ΣnHA = ∗ (5.4.1)

for n < 0,
ZΣnHA = Z∗ (5.4.2)

is the trivial theory. On the other hand, if n ≥ d, then the dual theory
ZΣd−1−nHA = Z∗ becomes the trivial theory. By Corollary 5.3.9 , we see
that

Corollary 5.4.3. When n ≥ d, then ZK(A,n)
∼= E|A|−1n as oriented TFTs.

The interesting cases are when 0 ≤ n < d, which we now investigate. We
will consider the cases (d = 1, n = 0), (d = 2, n = 0, 1), and (d = 3, n = 1).

Example 5.4.4. Let d = 1 and n = 0, then the spectra of interest are HA
and HÂ. The corresponding spaces are A and Â. The theories are sigma
models to discrete sets A and Â. As ∗ is a 0-manifold, we have

ZA(∗) = C[A] ZÂ(∗) = C[Â]. (5.4.5)

As d is odd, the Euler TFT is trivial. By Corollary 5.3.5 we have

ZA ' ZÂ (5.4.6)

as oriented TFTs. As 1-dimensional oriented TFT is determined by the
vector space on the positively oriented point +, this is equivalent to the
isomorphism of states:

C[A]
∼−→ C[Â]. (5.4.7)

This is given in Construction 5.3.13. In our case, the map is

C[A]→ C[Â]

a 7→
∑
α

α(a) α, (5.4.8)

where
∑

α runs through α ∈ Â. This is discrete Fourier transform.
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Example 5.4.9. Let d = 2 and n = 1. The dual spectra are ΣHA and HÂ.
Their underlying spaces are BA and Â. We have an equivalence between
finite gauge theory and sigma model. By swapping A and Â, we also covers
the d = 2, n = 0 case.

Corollary 5.3.9 gives an equivalence of oriented TFTs:

ZBA ' ZÂ ⊗ E|A|−1 . (5.4.10)

Let’s take a look at their values at S1:

ZBA(S1) = C[H1(S1, HA)] ' C[A], (5.4.11)

where the isomorphism uses the orientation of S1 to take the monodromy
around the oriented loop. On the other side, we have

ZÂ(S1) = C[Â]. (5.4.12)

The equivalence of TFTs gives an isomorphism:

C[A]
∼−→ C[Â] (5.4.13)

a 7→ 1

|A|
∑
α

α(a) α (5.4.14)

in fact, it differs from isomorphism of states of the 1d theories (Equation
5.4.8 by a factor of |A|. The pair of pants bordism

Figure 3: pair of pants

gives commutative multiplication on both sides. On the A side, we see that
the multiplication is

C[A]⊗ C[A]→ C[A] (5.4.15)

a⊗ b 7→ 1

|A|
ab, (5.4.16)
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where again we identify a ∈ A with the basis vector in C[A]. This is the
multiplication associated to the group algebra C[A]. On the Â side, the
multiplication is

C[Â]⊗ C[Â]→ C[A] (5.4.17)

α⊗ β 7→ δab. (5.4.18)

This is the point-wise multiplication of functions on the set Â. Under the
isomorphism 5.4.13, the two multiplication differ by |A|, which comes from
the Euler TFT E|A|−1 .

For a finite abelian group A, the isomorphism 5.4.13 is the starting point
of the character theory. If we extend these finite homotopy TFTs to points,
then the extended version of Theorem 5.0.4 implies that Rep(A) ' V ectÂ,
where Rep(A) is the category of representations of A, and V ectÂ is the

category of vector spaces on Â. Under this equivalence, the irreducible
representation labelled by α ∈ Â is send to the vector bundle that is rank 1
over α ∈ Â and rank 0 over all other points.

Example 5.4.19. Let d = 3, n = 1. The dual spectra are ΣHA and ΣHÂ.
The corresponding spaces are BA and BÂ. We have a duality of gauge
theories, topological analogue of electromagnetic duality (§1.1). As Euler
TFT is trivial in odd dimensions, we have an equivalence of oriented theory

ZBA ' ZBÂ. (5.4.20)

This is the starting point of [12], where Freed and Teleman showed that cer-
tain 2d lattice gauge theories, generalization of the Ising model, are bound-
ary field theories for the 3d finite gauge theory ZBA. In addition, they
showed that Kramers-Wannier duality, which is a duality between these
lattice gauge theories, can be understood as the isomorphism of boundary
theories coming from the 3d equivalence ZBA ' ZBÂ. See [12] for details.

5.5 Proof of Lemma 5.3.26

We borrow the notation from §5.3. This section is devoted to proving
Lemma 5.3.26:

Lemma 5.5.1. D(N ′)◦ZX (M) and ZΣd−1X̂ (M)◦D(N) differ by a constant
λ(M).

Proof. From now on, we will denote elements of

X 0(N), X 0(M), X 0(N ′) (5.5.2)
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as a, b, and a′. Similarly, we will denote elements of

X̂ d−1(N), X̂ d−1(M), X̂ d−1(N ′) (5.5.3)

as α, β, and α′. We also use the summing convention that
∑

b means sum-
ming over all b ∈ X 0(M), and

∑
b→a means summing over all b ∈ X 0(M)

such that p∗(b) = a.
We denote the inclusion maps p : N ↪→ M and q : N ′ ↪→ M . We have

pullback maps

p∗ : X 0(M)→ X 0(N), q∗ : X 0(M)→ X 0(N ′). (5.5.4)

Similarly we have

p̂∗ : X̂ d−1(M)→ X̂ d−1(N), q̂∗ : X̂ d−1(M)→ X̂ d−1(N ′). (5.5.5)

First we will calculate D(N ′) ◦ ZX (M). By Proposition 5.1.15, ZX (M)
sends

a 7→ |τ≥1X (M)|
|τ≥1X (N ′)|

∑
b→a

q∗b (5.5.6)

=
|τ≥1X (M)|
|τ≥1X (N ′)|

∑
a′

∑
b→a,b→a′

a′, (5.5.7)

Recall that D(N ′) takes

a′ 7→ |τ≥1X (N ′)|
∑
α′

〈a′, α′〉N α′. (5.5.8)

Thus the composition D(N ′) ◦ ZX (M) sends

a 7→ |τ≥1X (M)|
|τ≥1X (N ′)|

∑
b→a

(|τ≥1X (N ′)|
∑
α′

〈q∗b, α′〉N ′ α′) (5.5.9)

= |τ≥1X (M)|
∑
b→a

∑
α′

〈q∗b, α′〉N ′ α′. (5.5.10)

Now for ZΣd−1X̂ (M) ◦ D(N). D(N) sends:

a 7→ |τ≥1X (N)|
∑
α

〈a, α〉N α. (5.5.11)

ZΣd−1X̂ (M) takes

α 7→ |τ≥1Σd−1X̂ (M)|
|τ≥1Σd−1X̂ (N ′)|

∑
β,β→α

q̂∗β. (5.5.12)
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Thus the composition ZΣd−1X̂ (M) ◦ D(N) is

a 7→ |τ≥1X (N)| |τ≥1Σd−1X̂ (M)|
|τ≥1Σd−1X̂ (N ′)|

∑
α′

∑
β→α′
〈a, p̂∗β〉N α′. (5.5.13)

We are reduce to showing the following lemma:

Lemma 5.5.14. For every a and α′,
∑

b→a〈q∗b, α′〉N ′ and
∑

β→α′〈a, p̂∗β〉N
differ a nonzero constant multiplicative C that doesn’t depend on a or α′.

Proof. Note that if a has no preimage b 7→ a. Then∑
b→a
〈q∗b, α′〉N ′ = 0. (5.5.15)

In this case, Lemma 5.5.51 (stated and proven below) precise says that∑
β→α′
〈a, p̂∗β〉N = 0. (5.5.16)

Similarly, if α′ has no preimage β 7→ α′, then both sides are also zero. Thus
we are reduced to the case that a lies in the image of

p∗ : X 0(M)→ X 0(N) (5.5.17)

and α′ lies in the image of

q̂∗ : X̂ d−1(M)→ X̂ d−1(N). (5.5.18)

There are
|kp| := |ker(p∗ : X 0(M)→ X 0(N))| (5.5.19)

many preimage of a. Similarly, there are

|kq| := |ker(q̂∗ : Σd−1X̂ 0(M)→ Σd−1X̂ 0(N ′))| (5.5.20)

many preimages of α′.
On one side, we have ∑

b→a
〈q∗(b), α′〉N ′ (5.5.21)

= |kq|−1
∑
b→a

∑
β→α′
〈q∗(b), q∗β〉N ′ (5.5.22)

= |kq|−1
∑
b→a

∑
β→α′
〈p∗(b), p∗β〉N . (5.5.23)
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The last equation is by Lemma 5.5.36. On the other side, we have∑
β→α′
〈a, p∗β〉N (5.5.24)

= |kp|−1
∑
b→a

∑
β→α′
〈p∗(b), p∗β〉N . (5.5.25)

We see that they differ by a constant C = |kp|/|kq|.

Therefore

D(N ′) ◦ ZX (M) = λ(M) ZΣd−1X̂ (M) ◦ D(N), (5.5.26)

with

λ(M) =
|τ≥1X (M)|
|τ≥1X (N)|

|τ≥1Σd−1X̂ (N ′)|
|τ≥1Σd−1X̂ (M)|

|kp|
|kq|

. (5.5.27)

Now we need to proof the two Lemmas 5.5.51, 5.5.36 used above. We
need the following lemma:

Lemma 5.5.28. The natural maps

f : X̂1(M,∂M)→ X̂0(N)→ X̂0(M) (5.5.29)

and
g : X̂1(M,∂M)→ X̂0(N ′)→ X̂0(M) (5.5.30)

are inverses to each other. That is, f + g = 0.

Proof. Consider the triple ∂M → M → (M,∂M), where (M,∂M) repre-
sents the cofiber. We have a long exact sequence

· · · → X̂1(M,∂M)→ X̂0(∂M)→ X̂0(M)→ · · · . (5.5.31)

In particular, this means that the composition

h : X̂1(M,∂M)→ X̂0(∂M)→ X̂0(M) (5.5.32)

is the zero homomorphism h = 0. As ∂M = N t N ′, we see that h =
f + g.
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We first show lemma 5.5.36. Because it might have independence inter-
est, we recall the notations: we have M : N → N ′ a bordism between N
and N ′, with the inclusion maps p : N ↪→ M and q : N ′ ↪→ M . We have
pullback maps

p∗ : X 0(M)→ X 0(N), q∗ : X 0(M)→ X 0(N ′). (5.5.33)

Similarly we have

p̂∗ : X̂ d−1(M)→ X̂ d−1(N), q̂∗ : X̂ d−1(M)→ X̂ d−1(N ′). (5.5.34)

We will denote elements of X 0(M) as b and X̂ d−1(M) as β. Given b and β,
we have the two pairings (Equation 5.3.18):

〈p∗b, p̂∗β〉N , 〈q∗b, q̂∗β〉N ′ . (5.5.35)

Here’s the lemma that we need to show:

Lemma 5.5.36. 〈p∗b, p̂∗β〉N = 〈q∗b, q̂∗β〉N ′.

Proof. Recall that the orientation class [M ] restricts to [N ] on N and −[N ′]
on N ′. We will first consider 〈p∗b, p̂∗β〉N . By Poincaré duality (Theorem
3.2.55), there is an isomorphism of long exact sequences:

· · · X̂ d−1(M) X̂ d−1(N) X̂ d(M,N) · · ·

· · · X̂1(M,∂M) X̂0(N) X̂0(M,N ′) · · ·

∫
[M ]

p̂∗

∫
[N ]

µ̂∗

(5.5.37)
By definition of 〈−,−〉N , we have

〈p∗b, p̂∗β〉N = evN (p∗b,

∫
[N ]

p̂∗β) (5.5.38)

= evN (p∗b, µ̂∗

∫
[M ]

β) (5.5.39)

Now consider the long exact sequence:

...→ X 0(M)
p∗−→ X 0(N)→ X 1(M,N)→ ... (5.5.40)

By Brown-Comenetz duality (Corollary 3.4.55), taking Pontryagin dual term-
wise gives a long exact sequence

...← X̂0(M)
p̂∗←− X̂0(N)← X̂1(M,N)← ... (5.5.41)
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The dual long exact sequences are connected by the “projection formula”:
given b ∈ X 0(M) and γ ∈ X̂0(N), then

evN (p∗b, γ) = evM (b, p̂∗γ). (5.5.42)

Put it together with Equation 5.5.39:

〈p∗b, p̂∗β〉N = evN (p∗b, µ̂∗

∫
[M ]

β) (5.5.43)

= evM (b, p̂∗ ◦ µ̂∗
∫

[M ]
β) (5.5.44)

The same argument shows that

〈q∗b, q̂∗β〉N ′ = evM (b,−q̂∗ ◦ ν̂∗
∫

[M ]
β) (5.5.45)

The minus sign comes from the fact that [M ] restricts to −[N ′].
Note that the map

p̂∗ ◦ µ̂∗ : X̂1(M,∂M)→ X̂0(M) (5.5.46)

is precisely the map f in Lemma 5.5.28. Similarly, q̂∗ ◦ ν̂∗ = g. By Lemma
5.5.28, we see that

p̂∗ ◦ µ̂∗
∫

[M ]
β = −q̂∗ ◦ ν̂∗

∫
[M ]

β, (5.5.47)

therefore
〈p∗b, p̂∗β〉N = 〈q∗b, q̂∗β〉N ′ . (5.5.48)
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Remark 5.5.49. Heuristically, since the orientation class [M ] for M is a
homotopy from p∗[N ] to q∗[N ] ∈ Rd−1(M), therefore

〈p∗b, p̂∗β〉N ≈ 〈b, β〉p∗[N ] ≈ 〈b, β〉q∗[N ′] ≈ 〈q
∗b, q̂∗β〉N ′ . (5.5.50)

Now we proof the following lemma:

Lemma 5.5.51. Let a ∈ X 0(N) and α′ ∈ X̂ d−1(N ′). If a is not in the
image of p∗ : X 0(M)→ X 0(N), then∑

β→α′
〈a, p̂∗β〉N = 0, (5.5.52)

where β sums over X̂ d−1(M).

Proof. If α′ has no preimage in

q̂∗ : X̂ d−1(M)→ X̂ d−1(N ′), (5.5.53)

then the sum is trivially 0. If α′ has a preimage, say β′α. Then all other
preimages of α are of the form β′α + β0, where β0 ∈ ker(q̂∗). Thus∑

β→α′
〈a, p̂∗β〉N =

∑
β0∈ker(q̂∗)

〈a, p̂∗(β′α + β0)〉N (5.5.54)

= (〈a, p̂∗β′α〉N )
∑

β0∈ker(q̂∗)

〈a, p̂∗β0〉N . (5.5.55)

Therefore it is suffice to show that∑
β0∈ker(q̂∗)

〈a, p̂∗β0〉N = 0, (5.5.56)

i.e. the case where α′ = 0.
Poincaré duality (Theorem 3.2.55) gives an isomorphism of long exact

sequences:

· · · X̂ d−1(M,N ′) X̂ d−1(M) X̂ d−1(N ′) · · ·

· · · X̂1(M,N) X̂1(M,∂M) X̂0(N ′) · · ·

∫
[M ]

q̂∗

∫
[N′]

µ̂∗ ν̂∗

(5.5.57)
Note that µ̂∗ represents a different map from the proof of Lemma 5.5.36.
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Under Poincaré duality, ker(q̂∗) corresponds to ker(ν̂∗) = im(µ̂∗). Given
β0 ∈ ker(q̂∗) with ∫

[M ]
β0 = µ̂∗γ, γ ∈ X̂1(M,N), (5.5.58)

By definition of 〈−,−〉N , we have:

〈a, p̂∗β0〉N = evN (a, λ̂∗

∫
[M ]

β) (5.5.59)

= evN (a, (λ̂∗ ◦ µ̂∗)γ). (5.5.60)

λ̂∗ is the canonical map X0(M)→ X0(N). The composition

λ̂∗ ◦ µ̂∗ : X̂1(M,N)→ X̂0(N) (5.5.61)

is the Pontryagin dual of the

∂∗ : X 0(N)→ X 1(M,N). (5.5.62)

Therefore by Equation 5.5.60

〈a, p̂∗β0〉N = evN (a, (λ̂∗ ◦ µ̂∗)γ) (5.5.63)

= ev(M,N)(∂
∗a, γ). (5.5.64)

Thus

|ker(µ̂∗)|
∑

β0∈ker(p̂∗)

〈a, p̂∗β0〉N =
∑
γ

ev(M,N)(∂
∗a, γ), (5.5.65)

where γ sums over X̂1(M,N). Now consider the the long exact sequence:

· · · → X 0(M)
p∗−→ X 0(N)

∂∗−→ X 1(M,N)→ · · · (5.5.66)

By hypothesis, a is not in the image of p∗ : X 0(M)→ X 0(N), therefore

∂∗a ∈ X 1(M,N) (5.5.67)

is not the identity element. Thus

ev(M,N)(∂
∗a,−) : X̂1(M,N)→ C× (5.5.68)
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is a nontrivial character on X̂1(M,N). As the sum over all elements of the
group paired with a nontrivial character is 0, we see that∑

γ

ev(M,N)(∂
∗a, γ) = 0. (5.5.69)

By Equation 5.5.65, we get ∑
β0∈ker(p̂∗)

〈a, p̂∗β0〉N = 0. (5.5.70)

5.6 Proof of Lemma 5.3.27

We will borrow notation from last section §5.5. Recall from last section
we have

D(N ′) ◦ ZX (M) = λ(M) ZΣd−1X̂ (M) ◦ D(N) (5.6.1)

with

λ(M) =
|τ≥1X (M)|
|τ≥1X (N)|

|τ≥1Σd−1X̂ (N ′)|
|τ≥1Σd−1X̂ (M)|

|kp|
|kq|

. (5.6.2)

To finish the proof of the main theorem, we need the following lemma (see
previous section 5.4 for notations):

Lemma 5.6.3. λ(M) = |X |χ(M)−χ(M).

Proof. Recall that

λ(M) =
|τ≥1X (M)|
|τ≥1X (N)|

|τ≥1Σd−1X̂ (N ′)|
|τ≥1Σd−1X̂ (M)|

|kp|
|kq|

. (5.6.4)

First we will move everything in X̂ to X .
The first term is

|τ≥1Σd−1X̂ (N ′)|. (5.6.5)

By Poincaré duality (Theorem 3.2.45) we have

X̂ ∗(N ′) ∼= X̂d−1−∗(N
′). (5.6.6)

Therefore
|X̂ i(N ′)| = |X̂d−1−i(N

′)| = |X d−1−i(N ′)|. (5.6.7)
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The cardinality of Pontryagin dual groups are equal by Proposition 3.3.14.
Thus

|τ≥1Σd−1X̂ (N ′)| = |X̂
d−3(N ′)|

|X̂ d−2(N ′)|
|X̂ d−5(N ′)|
|X̂ d−4(N ′)|

· · · (5.6.8)

=
|X̂2(N ′)|
|X̂1(N ′)|

|X̂4(N ′)|
|X̂3(N ′)|

· · · (5.6.9)

=
|X 2(N ′)|
|X 1(N ′)|

|X 4(N ′)|
|X 3(N ′)|

· · · (5.6.10)

= |τ≤−1X (N ′)|. (5.6.11)

Next we will work on
|τ≥1Σd−1X̂ (M)|−1. (5.6.12)

Similar to above, we have

|X̂ i(M)| = |X̂d−i(M,∂M)| = |X d−i(M,∂M)|. (5.6.13)

Therefore

|τ≥1Σd−1X̂ (M)|−1 =
|X̂ d−2(M ′)|
|X̂ d−3(M ′)|

|X̂ d−4(M ′)|
|X̂ d−5(M ′)|

· · · (5.6.14)

=
|X̂2(M,∂M)|
|X̂3(M,∂M)|

|X̂4(M,∂M)|
|X̂5(M,∂M)|

· · · (5.6.15)

=
|X 2(M,∂M)|
|X 3(M,∂M)|

|X 4(M,∂M)|
|X 5(M,∂M)|

· · · (5.6.16)

= |τ≤−1X (N ′)|. (5.6.17)

Lastly, we have

|kq| := |ker(q̂∗ : X̂ d−1(M)→ X̂ d−1(N ′))|. (5.6.18)

By Poincare duality (Theorem 3.2.55): we have that an isomorphism of long
exact sequences:

· · · X̂ ∗(M,N ′) X̂ ∗(M) X̂ ∗(N ′) · · ·

· · · X̂d−∗(M,N) X̂d−∗(M,∂M) X̂d−1−∗(N
′) · · ·

q∗

(5.6.19)
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Thus

|kq| = |ker(X̂1(M,∂M)→ X̂0(N ′))| (5.6.20)

= |im(X̂1(M,N)→ X̂1(M,∂M)|. (5.6.21)

By Brown-Comenetz duality (Corollary 3.4.55), the long exact sequence

· · · → X̂d−∗(M,N)→ X̂d−∗(M,∂M)→ X̂d−1−∗(N
′)→ · · · (5.6.22)

is the Pontryagin dual of

· · · ← X d−∗(M,N)← X d−∗(M,∂M)← X d−1−∗(N ′)← · · · (5.6.23)

Thus

|kq| = |im(X̂1(M,N)→ X̂1(M,∂M)| (5.6.24)

= |im(X 1(M,∂M)→ X 1(M,N)| (5.6.25)

= |ker(X 1(M,N)→ X 1(N ′))|. (5.6.26)

To recap, we have

λ(M) =
|τ≥1X (M)|
|τ≥1X (N)|

|ker(X 0(M)
p∗−→ X 0(N))|

|ker(X 1(M,N)→ X 1(N ′))|
|τ≤−1X (N ′)||τ≤−1X (N ′)|.

(5.6.27)

Now we will factor out |X |χ(M)−χ(M) from λ(M). For any π-finite space
Y, we have a fiber sequence

τ≥iY → Y → τ≤i−1Y (5.6.28)

of π-finite spaces. By Example 4.1.38 we have

|τ≥iY| |τ≤i−1Y| = |Y|. (5.6.29)

In our case,

|τ≥1X (M)| = |X (M)|
|τ≤0X (M)|

. (5.6.30)

Similarly,

|τ≥1X (N)|−1 =
|τ≤0X (N)|
|X (N)|

. (5.6.31)
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By Proposition 4.1.44 we have

|X (M)| = |X |χ(M) (5.6.32)

and
|X (N)| = |X |χ(N). (5.6.33)

Putting it all together, we see that

λ(M) = λ′(M) |X |χ(M)−χ(M), (5.6.34)

where

λ′(M) =
|τ≤0X (N)|
|τ≤0X (M)|

|τ≤−1X (N ′)| |τ≤−2X (M,∂M)|

|ker(X 0(M)
p∗−→ X 0(N))|

|ker(X 1(M,N)→ X 1(N ′))|

(5.6.35)

It remains to show that λ′(M) = 1.
As

∂M = N tN ′, (5.6.36)

we have
|X ∗(∂M)| = |X ∗(N)| |X ∗(N ′)|. (5.6.37)

Therefore

|τ≤0X (N)| |τ≤−1X (N ′)| = |X 0(N)| |τ≤−1X (∂M)|. (5.6.38)

Now consider the exact sequences

0→ ker p∗ → X 0(M)
p∗−→ X 0(N)→ coker p∗ → 0, (5.6.39)

We see that the terms

|ker p∗| |τ≤0X (M)|−1 |τ≤0X (N)| = |coker p∗|. (5.6.40)

Lastly, we rewrite

|coker p∗| = |ker X 1(M,N)→ X 1(M)|. (5.6.41)

Thus

λ′(M) =
|τ≤−1X (∂M)|
|τ≤−1X (M)|

|τ≤−2X (M,∂M)|

|ker(X 1(M,N)→ X 1(M))|
|ker(X 1(M,N)→ X 1(N ′))|

(5.6.42)
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I claim that

|ker(X 1(M,N)→ X 1(M))|
|ker(X 1(M,N)→ X 1(N ′))|

= |ker(X 1(M)→ X 1(∂M))|−1. (5.6.43)

First notice that the canonical map

X 1(M,N)→ X 1(N) = 0, (5.6.44)

therefore

|ker(X 1(M,N)→ X 1(N ′))| = |ker(X 1(M,N)→ X 1(∂M))|. (5.6.45)

Note that
X 1(M,N)→ X 1(∂M) (5.6.46)

is the composition of the two terms

(X 1(M)→ X 1(∂M)) ◦ (X 1(M,N)→ X 1(M)) (5.6.47)

on the RHS. Therefore we are trying to show this:

|ker(X 1(M,N)→ X 1(∂M)) = |ker(X 1(M,N)→ X 1(M))| (5.6.48)

|ker(X 1(M)→ X 1(∂M))|. (5.6.49)

We have the following algebraic fact: given

f : A→ B, g : B → C (5.6.50)

then
|ker(g ◦ f)| = |kerf | |kerg| (5.6.51)

iff
ker(g) ⊂ im(f). (5.6.52)

In our case, if an element a ∈ X 1(M) maps to 0 in X 1(∂M), then it maps
to 0 in X 1(N). Since

X 1(M,N)→ X 1(M)→ X 1(N)

is a part of a long exact sequence, it is exact at X 1(M). That means that
there exists b ∈ X 1(M,N) which maps to a. Thus we satisfy the algebraic
condition, and we have

|ker(X 1(M,N)→ X 1(M))|
|ker(X 1(M,N)→ X 1(N ′))|

= |ker(X 1(M)→ X 1(∂M))|−1. (5.6.53)
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So

λ′(M) =
|τ≤−1X (∂M)|
|τ≤−1X (M)|

|τ≤−2X (M,∂M)|
|ker(X 1(M)→ X 1(∂M))|

. (5.6.54)

Finally, consider the following long exact sequence:

0→ ker(X 1(M)→ X 1(∂M))→ X 1(M)→ X 1(∂M) (5.6.55)

→ X 2(M,∂M)→ X 2(M)→ X 2(∂M)→ · · · . (5.6.56)

By Lemma 4.1.9 the alternating size of the finite abelian groups in a long
exact sequence is 1. The alternating size of the long exact sequence 5.6.55
above is precisely λ′(M), thus

λ′(M) = 1. (5.6.57)
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A Background on Homotopy theory

In the appendix we recall the basic facts of the (∞-)categories of spaces
S and spectra Sp. The references for the appendix is [18], [17].

Note that both S and Sp are∞-categories in the sense of [18]. We use∞-
category theory as it has nice categorical properties, however, in the expense
of having higher coherences. We will point out when the complications
arises.

In §A.1 we review the category of spaces S. In §A.2 we review the
category of spectra Sp. In §A.3 we review the relationship between spectra
and generalized (co)homology theories.

A.1 The category of spaces

Let S be the (∞)-category of spaces. It is the (ordinary) category of
CW complexes localized at weak equivalence. However, this localization is
a homotopic on, that is, it keeps track of the higher coherence. Alternatively,
S is the model category of CW complexes with weak homotopy equivalence.
S has all (homotopy) limits and colimits.

Definition A.1.1. Given a map f : X → Y , the cofiber of f is the colimit
of the diagram:

X Y

∗

f

(A.1.2)

Given a cofiber Z, we have a commutative diagram:

X Y

∗ Z

f

g (A.1.3)

We see that the composition g ◦ f : X → Z is homotopic equivalence to a
the constant map to the basepoint of Z.

Definition A.1.4. Given morphisms f : X → Y, g : Y → Z, this is called
a cofiber sequence if Z is the cofiber of f : X → Y .

Let S∗ be the (∞)-category of pointed spaces. The objects are topolog-
ical spaces X with a basepoint ∗ → X. Maps in S∗ respect the basepoint.
In S∗, we have a similar notion of fiber and fiber sequence.
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S has a mapping object Maps : Sop × S → S. It satisfies the property
that for any cofiber sequence X → Y → Z and a pointed space W , note
that Maps(X,W ) is a pointed space. The sequence

Maps(Z,W )→Maps(Y,W )→Maps(X,W ) (A.1.5)

is a cofiber sequence.

A.2 The category of spectra

In this subsection, we recall some facts about spectra. Most of them are
formal (see [14] for a nice introduction). We follow [10] for a large part of
this subsection.

Let S be the category of spaces, S∗ the category of pointed spaces. Recall
that S∗ has a symmetric monoidal product ∧ and an inner hom object Maps.
Wedgeing with − ∧ S1 is the suspension functor Σ−. Dually, Maps(S1,−)
is the loop functor Ω−.For every X,Y ∈ S∗, We have an equivalence

Maps(ΣX,Y ) 'Maps(X,ΩY ), (A.2.1)

realizing Σ as the left adjoint of Ω.

Definition A.2.2. A prespectrum X is a sequence X0, X1, ... of pointed
topological spaces with canonical map

sn : ΣXn → Xn+1. (A.2.3)

A map of prespectrum f : X → Y is a series of maps fn : Xn → Yn that
commutes with sn.

The homotopy group πnX , n ∈ Z, is defined as

πnX := lim−→
k

πn+kXn+k (A.2.4)

where the limit maps is given by

πn+kXn+k
Σ−→ πn+k+1ΣXn+k

sn+k−−−→ πn+k+1Xn+k+1. (A.2.5)

Note that even when n is negative, Xn+k is eventually defined for k large
enough.

Given a map f : X → Y of spectrums, we get induced maps on homotopy
groups:

πn(f) : πnX → πnY. (A.2.6)

81



f is a weak homotopy equivalence if it induces isomorphism on homotopy
groups.

The category of spectra Sp is the category of prespectrum localizes at
weak homotopy equivalence. Effectively, it means that we will only consider
things up to weak homotopy equivalence (similar to our treatment of the
category of spaces). From now on, we will think about a prespectrum X as
a spectrum (its equivalence class), and refer to them as such.

Remark A.2.7. The category of spectra Sp is a (∞, 1)-category, that is, it
has higher homotopy coherence coming from the localization at weak equiv-
alence. The formalism of (∞, 1) categories are harder to describe than ordi-
nary categories. The two standard approach are based on model categories
and quasi-categories [17]. Thus everything below should be stated in those
context, however, for the purpose of this paper, much of the complication
won’t play a major role. For detail, see [17].

A large family of spectrum comes from pointed spaces:

Example A.2.8. The suspension spectrum Σ∞X of a pointed space X is the
spectrum associated to the prespectrum

(Σ∞X)n = ΣnX (A.2.9)

with the canonical maps Σ(Σn−1X) ' ΣnX.

Note that we have a functor Σ∞ : S∗ → Sp. Another class of spectrum
comes from abelian group.

Example A.2.10. Let A be an abelian group, then we define the Eilenberg-
MacLane spectrum HA as follows:

HAn = K(A,n) (A.2.11)

with canonical map ΣK(A,n) → K(A,n + 1) the right adjoint of the iso-
morphism

K(A,n) ' ΩK(A,n+ 1). (A.2.12)

Definition A.2.13. An Ω spectrum is spectrum such that the correspond-
ing map

Xn → ΩXn+1 (A.2.14)

associated to sn : ΣXn → Xn+1 is an equivalence.

In fact, every spectrum is weak equivalent to a Ω-spectrum. Given an Ω
spectrum X = {X0, X1, ..}, we can define its 0-th space, denoted as Ω∞X ,
to be X0.
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This gives a functor Ω∞ : Sp→ S∗. In fact, it is the right adjoint of Σ∞:

MapsSp(Σ
∞X,Y) 'MapsS∗(X,Ω

∞Y). (A.2.15)

here MapsSp and MapsS∗ are the categorical homs, that is, they are the
space of maps.

We have a suspection functor Σ : Sp → Sp defined as follows: for a
spectrum X ,

(ΣX )n := ΣXn (A.2.16)

with canonical connecting maps. Note that Σ∞ commutes with Σ : S∗ → S∗
and Σ : Sp→ Sp. That is, we have a commutative diagram:

S∗ S∗

Sp Sp

Σ

Σ∞ Σ∞

Σ

(A.2.17)

In addition, this is in fact an invertible functor, thus it has an inverse denoted
as Σ−1 or Ω. By abstract nonsense, we also have this commutative diagram:

Sp Sp

S∗ S∗

Ω

Ω∞ Ω∞

Ω

(A.2.18)

With this, we can define the sphere spectrum ant its shifts:

Sn := ΣnΣ∞S0 (A.2.19)

n ∈ Z S0 the 0-th sphere as a pointed space. When n = 0, S := S0 = Σ∞S0

is called the sphere spectrum.
Similar the category of pointed space S∗, the category of spectra Sp has

a symmetric monoidal product product ⊗ : Sp× Sp→ Sp, which we called
the tensor product (traditionally it’s called the smash product). The unit
object of the symmetric monoidal proudct is the sphere spectrum S. It also
has an internal hom object

Maps : Spop × Sp→ Sp. (A.2.20)

As any internal hom, it has the universal property that, for a spectra X ,Y,Z,
we have

Maps(X ⊗ Y,Z) 'Maps(X ,Maps(Y,Z)). (A.2.21)
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Note that we will denote the categorical hom as MapsSp, and the internal
hom as Maps. We have

MapsSp(−,−) = Ω∞ ◦Maps(−,−) (A.2.22)

Note that Σ∞ : (S∗,∧)→ (Sp,⊗) is a symmetric monoidal functor.
Now we move on to the notion of fiber sequence:

Definition A.2.23. A sequence of map X → Y → Z is called a fiber
sequence if the induced map of homotopy groups

· · · → πnX → πnY → πnZ → · · · (A.2.24)

is a long exact sequence of abelian groups.

Note that if X → Y → Z is a fiber sequence, there is a caononical map
Z → ΣX , and Y → Z → ΣX is also a fiber sequence.

Given f : X → Y, there is an essentially unique fib(f) with a canonical
map fib(f)→ X that makes fib(f)→ X → Y a fiber sequence.

Most operations in Sp preserves fiber sequence: let X be a spectrum,
then the functors

Σ, Ω, Maps(X ,−), Maps(−,X ), X ⊗− (A.2.25)

all sends fiber sequence to fiber sequence (these are called exact functors).
Recall that in S∗, there is a notion of cofiber and fiber sequences (and

they are not the same). The functor

Σ∞ : S∗ → Sp (A.2.26)

sends cofiber sequences of pointed spaces to fiber sequences of spectra.
Similarly, we have

Ω∞ : Sp→ S∗ (A.2.27)

sends fiber sequences of spectra to fiber sequences of pointed spaces.
We will also need to talk about the Postnikov truncation. We first start

with the notion of connective, coconnective spectra:

Definition A.2.28. A spectrum X is called n-connective if for every n < 0,
we have πn(X ) = 0. Similarly, a spectrum is called n-coconnective if for
every n > 0¡ we have πn(X ) = 0. When n is 0, they are just called connective
and coconnective.
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The quintessential example of a connective spectrum is Σ∞X for X a
pointed space.

For a spectrum X and n ∈ Z, there is an universal n-connective spectra
τ≥nX with a map τ≥nX → X that induces isomorphism

πi(τ≥nX ) ' πiX (A.2.29)

for all i >≥ n. Similarly, there is also an universal n − 1-coconnective
spetrum τ<nX with a map X → τ<nX that induces isomorphism

πi(X )→ πi(τ<nX ) (A.2.30)

for i < n. Note that for any n, the canonical maps

τ≥nX → X → τ<nX (A.2.31)

is a fiber sequence.
Lastly, we need the notion of a ring spectrum. Recall the Sp is a sym-

metric monoidal category with tensor product ⊗. For symmetric monoidal
category (C,⊗, 1C), there is a notion of associative algebra of (C,⊗). Heuris-
tically, it is an object c ∈ C with an associative product c ⊗ c → c and an
unital object 1C → c. In addition, if c is an algebra object, then we can
define (left) module objects of c. Heuristically, a c-module is an object
d ∈ C and action maps c ⊗ d → d that is unital and compatible with the
multiplication of c.

Definition A.2.32. An E1-ring spectrum R is an associative algebra in
Sp. We also refer to them as just ring spectra. For a ring spectrum R, a
R module is a R module object in Sp. The category of R modules forms a
category ModR.

Remark A.2.33. As Sp is a higher category, thus there are higher coherence
data for ring spectrum and module spectrum that needs to be given. They
are essential part of the data. For precise definition see [17].

Example A.2.34. The quiteseential example of a ring spectrum is the sphere
spectrum S. Being the unit of Sp, S has in fact a fully symmetric monoidal
product. In addition, every spectrum is canonically a S module, thus
ModS = Sp.

Example A.2.35. Let R be an associative ring, then the Eilenberg-MacLane
spectrumHR is a ring spectrum. IfN is a R module, thenHN is aHR mod-
ule. Thus Z is a (commutative) ring spectrum, and any Eilenberg-MacLane
spectrum is a module for Z. Note that ModZ is the derived category of
chain complexes of Abelian groups D(Ab).
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A.3 Spectra and cohomology theories

A huge motivation for spectra was to define a suitable category of (co)homology
theories. In this subsection we review this relationship. This subsection
largely follows [14]. We first recall the definition of a homology/cohomology
theory. We first start with homology theory:

Let CW be the ordinary 1-category of finite pointed CW complexes
(not localized at weak equivalence), CW∗ be the category of finite pointed
CW complexes. A reduced homology theory is a sequence of functors Ẽn :
CW → Ab that satisfies the Eilenberg-Steenrod Axioms:

Definition A.3.1. An reduced (extraordinary) homology theory Ẽ∗ is a
sequence of functors Ẽn : CW∗ → Ab, n ∈ Z, such that

1. A homotopy equivalence of pointed finite CW complexes f : X
∼−→ Y

induces an isomorphism

WEn(f) : Ẽn(X)
∼−→ Ẽn(Y ) (A.3.2)

for every n.

2. For any two finite CW complexes X and Y , the canonical map exhibits
isomorphism

Ẽn(X ∨ Y ) ' Ẽn(X)⊕ Ẽn(Y ) (A.3.3)

for all n.

3. For any finite CW complex X, we have canonical isomorphism

Ẽn+1(ΣX) ' Ẽn(X). (A.3.4)

4. Let X → Y → Z be a cofiber sequence of pointed finite CW com-
plexes. Then we the sequence

Ẽn(X)→ Ẽn(Y )→ Ẽn(Z) (A.3.5)

is exact at Ẽn(Y ).

Note that if X → Y → Z is a cofiber sequence, then so is Y → Z → ΣX.
As Ẽn+1(ΣX) ' Ẽn(X), we see that we have a long exact sequence of
homology groups

· · · → Ẽn(X)→ Ẽn(Y )→ Ẽn(Z)→ Ẽn−1(X)→ · · · (A.3.6)

A homology theory Ẽ∗ is called ordinary if Ẽn(S0) = 0 for n 6= 0.
From a reduced homology theory we can define a nonreduced homology

theory:
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Definition A.3.7. Let Ẽ∗ be a reduced homology theory. Let X be a
(unpointed) CW complex. Then the nonreduced homology groups Ei(X) is
defined as

Ei(X) := Ẽi(X+), (A.3.8)

where X+ is the X with an added basepoint. Functorially, En is the com-
position

CW
−+−−→ CW∗

Ẽn−−→ Ab. (A.3.9)

Similarly, we can define a cohomology theory:

Definition A.3.10. An reduced (extraordinary) cohomology theory Ẽ∗ is
a sequence of functors Ẽn : CW op → Ab such that

1. A homotopy equivalence of pointed finite CW complexes f : X
∼−→ Y

induces an isomorphism

Ẽn(f) : Ẽn(Y )
∼−→ Ẽn(X) (A.3.11)

for every n.

2. For any two finite CW complexes X and Y , the canonical map exhibits
isomorphism

Ẽn(X ∨ Y ) ' Ẽn(X)⊕ Ẽn(Y ) (A.3.12)

for all n.

3. For any finite CW complex X, we have canonical isomorphism

Ẽn−1(ΣX) ' Ẽn(X). (A.3.13)

4. Let X → Y → Z be a cofiber sequence of pointed finite CW com-
plexes. Then we the sequence

Ẽn(Z)→ Ẽn(Y )→ Ẽn(X) (A.3.14)

is exact at Ẽn(Y ).

Simiarly, given a cofiber sequence X → Y → Z, we have a long exact
sequence of cohomology groups

· · · → Ẽn(X)→ Ẽn(Y )→ Ẽn(Z)→ Ẽn−1(X)→ · · · (A.3.15)

A cohomology theory Ẽ∗ is called ordinary if Ẽn(S0) = 0 for n 6= 0.
From a reduced cohomology theory we can define a nonreduced coho-

mology theory:
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Definition A.3.16. Let Ẽ∗ be a reduced cohomology theory. Let X be a
(unpointed) CW complex. Then the nonreduced cohomology groups Ei(X)
is defined as

Ei(X) := Ẽi(X+), (A.3.17)

where X+ is the X with an added basepoint. Functorially, En is the com-
position

CW op −+−−→ CW op
∗

Ẽn−−→ Ab. (A.3.18)

One of the original motivation for spectra is that they give homology
and cohomology theories:

Construction A.3.19. Let X be a spectrum, X a pointed finite CW space.
Then we define the n-th reduced homology of X with coefficients X as

X̃n(X) := πn(Σ∞X ⊗X ). (A.3.20)

Functorially, consider the composition

X̃n : CW∗
Σ∞−−→ Sp

⊗X−−→ Sp
πn−→ Ab. (A.3.21)

Similarly, we define the n-th reduced cohomology group of X with coeffi-
cients in X as

X̃ n(N) := π−n(Maps(Σ∞X,X )). (A.3.22)

Functorially, consider the composition

X̃ n : CW op
∗

Σ∞−−→ Spop
Maps(−,X )−−−−−−−→ Sp

π−n−−→ Ab. (A.3.23)

One can check that X̃n, X̃ n satisfies the Eilenberg-Steenrod axioms, thus
they define homology and cohomology theory, respectively. Thus we can
also define nonreduced homology and cohomology:

Definition A.3.24. Thus if X is an unpointed CW complex, the nonre-
duced homology Xi(X) of X with coefficients in X is

Xi(X) := πi(Σ
∞N ∧ X ). (A.3.25)

And the nonreduced cohomology X i(X) of X with coefficients in X is

X n(N) := π−n(Maps(Σ∞+ X,X )). (A.3.26)

Conversely, given a homology/cohomology, theory, we can find a spec-
trum representing it. This is the statements of Brown’s representability
theorems [3]:
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Theorem A.3.27 (Brown’s Representability). For any (reduced) homology
theory Ẽn, there is an essentially unique spectrum representing it. That is,
there is a spectrum X such that X̃n ' Ẽn compatible with all data.

Note
πn(X ) = X̃n(S0) ' Ẽn(S0). (A.3.28)

Thus if Ẽ∗ is an ordinary homology theory with Ẽ0(S0) = A, then it is the
homology theory associated to the Eilenberg-MacLane spectrum HA. This
is why it’s called ordinary.

We have a similar theorem for cohomology theories

Theorem A.3.29. For any (reduced) cohomology theory Ẽn, there is an
essentially unique spectrum representing it. That is, there is a spectrum X
such that X̃ n ' En compatible with all data.

Note that
πn(X ) = X̃−n(S0) ' Ẽ−n(S0). (A.3.30)

Thus if Ẽ∗ is an ordinary cohomology theory with Ẽ0(S0) = A, then it
is the cohomology theory associated to HA. We will not prove Brown’s
Representability theorems, see [3], [17] for details.
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