Differential Cohomology and Virasoro Central Extensions

Yu Leon Liu

Harvard University

April 3rd 2022

Based on [arXiv:2112.10837] Joint with Arun Debray and Christoph Weis

2 Virasoro groups and central extensions

2 Virasoro groups and central extensions

3 Differential cohomology

4 Main theorem

• The Virasoro groups describe space-time symmetries of 2d CFTs. As such, it is important to physics (string theory, condensed matter) and mathematics (geometric representation theory).

- The Virasoro groups describe space-time symmetries of 2d CFTs. As such, it is important to physics (string theory, condensed matter) and mathematics (geometric representation theory).
- Virasoro groups is a **R** family of central extension of $\text{Diff}^+(S^1)$, the group of orientation preserving smooth automorphism of S^1 .

- The Virasoro groups describe space-time symmetries of 2d CFTs. As such, it is important to physics (string theory, condensed matter) and mathematics (geometric representation theory).
- Virasoro groups is a **R** family of central extension of $\text{Diff}^+(S^1)$, the group of orientation preserving smooth automorphism of S^1 .
- The central extension is describe by the Bott-Thurston cocyle.

- The Virasoro groups describe space-time symmetries of 2d CFTs. As such, it is important to physics (string theory, condensed matter) and mathematics (geometric representation theory).
- Virasoro groups is a **R** family of central extension of $\text{Diff}^+(S^1)$, the group of orientation preserving smooth automorphism of S^1 .
- The central extension is describe by the Bott-Thurston cocyle.
- The goal of this talk is to give a novel geometric description these central extensions, using differential cohomology, affirmativaly answering a conjecture of Freed-Hopkins.

2 Virasoro groups and central extensions

Recall that $\text{Diff}^+(S^1)$ is the group of orientation preserving smooth automorphism of S^1 . It is an infinite-dimensional Frechet Lie group.

Recall that $\text{Diff}^+(S^1)$ is the group of orientation preserving smooth automorphism of S^1 . It is an infinite-dimensional Frechet Lie group.

Definition

The Virasoro group $\operatorname{Vir}_{\lambda}$, for $\lambda \in \mathbf{R}$, is a U(1) central extension of $\operatorname{Diff}^+(S^1)$, described by the Bott-Thurston cocycle $B_{\lambda} : \operatorname{Diff}^+(S^1) \times \operatorname{Diff}^+(S^1) \to U(1)$:

Recall that $\text{Diff}^+(S^1)$ is the group of orientation preserving smooth automorphism of S^1 . It is an infinite-dimensional Frechet Lie group.

Definition

The Virasoro group $\operatorname{Vir}_{\lambda}$, for $\lambda \in \mathbf{R}$, is a U(1) central extension of $\operatorname{Diff}^+(S^1)$, described by the Bott-Thurston cocycle $B_{\lambda} : \operatorname{Diff}^+(S^1) \times \operatorname{Diff}^+(S^1) \to U(1)$:

$$B_{\lambda}(\gamma_{1},\gamma_{2}) = \exp\left(-\frac{i\lambda}{48\pi} \int_{S^{1}} \log(\gamma_{1}' \circ \gamma_{2}) d(\log(\gamma_{2}))'\right)$$
(1)

for $\gamma_1, \gamma_2 \in \mathrm{Diff}^+(S^1)$, viewed as morphisms $S^1 \to S^1$.

Let's briefly review what is a central extension:

Let's briefly review what is a central extension:

Definition

Let G be a group and A be an abelian group, a central extension of G by A is a group \tilde{G} with short exact sequence:

$$0 o A o ilde{G} o G o 1$$
 (2)

such that subgroup $A \subset \tilde{G}$ is in the center, that is, it commutes with every element of \tilde{G} .

Proposition

Let G be a discrete group, then the isomorphism class of central extensions of G by A is classified by group cohomology class $H^2(G; A) \simeq H^2(BG; A)$, where BG is the classifying space of G.

Proposition

Let G be a discrete group, then the isomorphism class of central extensions of G by A is classified by group cohomology class $H^2(G; A) \simeq H^2(BG; A)$, where BG is the classifying space of G.

Given a cocycle class $b \in C^2(G; A)$, viewed as a map $b: G \times G \to A$ satisying some cocycle conditions. Then $\tilde{G} = G \times A$ as a set, with multiplication $(g, a) \cdot (g', a') \coloneqq (g \cdot g', a + a' + b(g, g'))$.

Proposition

Let G be a discrete group, then the isomorphism class of central extensions of G by A is classified by group cohomology class $H^2(G; A) \simeq H^2(BG; A)$, where BG is the classifying space of G.

Given a cocycle class $b \in C^2(G; A)$, viewed as a map $b : G \times G \to A$ satisying some cocycle conditions. Then $\tilde{G} = G \times A$ as a set, with multiplication $(g, a) \cdot (g', a') \coloneqq (g \cdot g', a + a' + b(g, g'))$. The map $\tilde{G} \to G$ is $(g, a) \mapsto g$. Problem: Smooth U(1) central extensions of nondiscret Lie groups are NOT classified by ordinary cohomology classes.

Problem: Smooth U(1) central extensions of nondiscret Lie groups are NOT classified by ordinary cohomology classes.

We need a cohomology theory that remembers the smooth structures.

Problem: Smooth U(1) central extensions of nondiscret Lie groups are NOT classified by ordinary cohomology classes.

We need a cohomology theory that remembers the smooth structures.

The answer is differential cohomology.

Virasoro groups and central extensions

4 Main theorem

Let M be a manifold, then the ordinary cohomology groups $H^*(M; A)$ depends only on the homotopy classes of M. It is the cohomology of the constant sheave <u>A</u> on M. On the other hand, the *i*-th cohomology form on M, $\Omega^i(M)$ is sensitive to the smooth structure of M.

Let M be a manifold, then the ordinary cohomology groups $H^*(M; A)$ depends only on the homotopy classes of M. It is the cohomology of the constant sheave <u>A</u> on M. On the other hand, the *i*-th cohomology form on M, $\Omega^i(M)$ is sensitive to the smooth structure of M.

We can view both constant sheaves and differential forms as sheaves on Mfld, the site of smooth manifolds.

Let M be a manifold, then the ordinary cohomology groups $H^*(M; A)$ depends only on the homotopy classes of M. It is the cohomology of the constant sheave <u>A</u> on M. On the other hand, the *i*-th cohomology form on M, $\Omega^i(M)$ is sensitive to the smooth structure of M.

We can view both constant sheaves and differential forms as sheaves on Mfld, the site of smooth manifolds.

Even though Ω^i are not homotopy invariant, the chain complex of sheaves $\Omega^* = 0 \rightarrow \Omega^0 \xrightarrow{d} \Omega^1 \xrightarrow{d} \ldots$ is a homotopy invariant, in fact,

Theorem (de Rham)

The chain complex Ω^* is the constant sheave \mathbb{R} , as a chain complex concentrated in degree 0.

イロト イヨト イヨト

With this in mind, we define the (chain complex of) sheave $\mathbb{Z}(n)$ as

$$\mathbb{Z}(n) = \underline{\mathbb{Z}} \to \Omega^0 \to \Omega^1 \to \dots \to \Omega^{n-1} \to 0.$$
 (4)

With this in mind, we define the (chain complex of) sheave $\mathbb{Z}(n)$ as

$$\mathbb{Z}(n) = \underline{\mathbb{Z}} \to \Omega^0 \to \Omega^1 \to \dots \to \Omega^{n-1} \to 0. \tag{4}$$

These sheaves $\mathbb{Z}(n)$ are both sensitive to topology (from \mathbb{Z}) and the smooth structure (from Ω^i).

With this in mind, we define the (chain complex of) sheave $\mathbb{Z}(n)$ as

$$\mathbb{Z}(n) = \underline{\mathbb{Z}} \to \Omega^0 \to \Omega^1 \to \dots \to \Omega^{n-1} \to 0. \tag{4}$$

These sheaves $\mathbb{Z}(n)$ are both sensitive to topology (from \mathbb{Z}) and the smooth structure (from Ω^i).

There is also a form of integration. let M be a closed oriented d-dimensional manifold, then there is an integration map:

$$\int_{\mathcal{M}} : H^*(\mathcal{M}; \mathbb{Z}(n)) \to H^{*-d}(*; \mathbb{Z}(n-d)).$$
(5)

There is also a relative version of this.

A cocycle in $C^2(M; \mathbb{Z}(1))$ can be describe as follows: fix an open covering $\{U_i\}$ of M, we have 0-form (\mathbb{R} -valued functions) a on the open subsets $U_{ij} = U_i \cap U_j$, and \mathbb{Z} -valued functions f_{ijk} on intersections U_{ijk} , such that $a_{ij} - a_{jk} + a_{ik} = f_{ijk}$.

A cocycle in $C^2(M; \mathbb{Z}(1))$ can be describe as follows: fix an open covering $\{U_i\}$ of M, we have 0-form (\mathbb{R} -valued functions) a on the open subsets $U_{ij} = U_i \cap U_j$, and \mathbb{Z} -valued functions f_{ijk} on intersections U_{ijk} , such that $a_{ij} - a_{jk} + a_{ik} = f_{ijk}$.

This precisely describe the data of a U(1) principal bundle on M!

Proposition

 $H^2(M; \mathbb{Z}(1))$ is the group of isomorphism classes of U(1) principal bundles on M.

Furthermore, $H^2(M; \mathbb{Z}(2))$ is the group of isomorpism classes of U(1) principal bundles with connections on M (Hint: for the cocycle here we need also 1-form α_i on U_i , with $\alpha_i - \alpha_j = da_{ij}$).

While $H^2(-;\mathbb{Z}(1))$ classifies U(1) principal bundle, $H^3(-;\mathbb{Z}(1))$ classifies U(1) central extensions:

While $H^2(-; \mathbb{Z}(1))$ classifies U(1) principal bundle, $H^3(-; \mathbb{Z}(1))$ classifies U(1) central extensions:

Theorem

Let G be a smooth (possibly infinite dimensional) Lie group, $B_{\bullet}G$ its classifying space. Then $H^3(BG; \mathbb{Z}(1))$ classifies smooth central extensions of G by U(1).

While $H^2(-; \mathbb{Z}(1))$ classifies U(1) principal bundle, $H^3(-; \mathbb{Z}(1))$ classifies U(1) central extensions:

Theorem

Let G be a smooth (possibly infinite dimensional) Lie group, $B_{\bullet}G$ its classifying space. Then $H^{3}(BG; \mathbb{Z}(1))$ classifies smooth central extensions of G by U(1).

 $B_{\bullet}G$ is the classifying space of G, viewed as a sheave on *Mfld*.

Let G be a Lie group, and $B_{\bullet}G$ the classifying space. Then $H^*(B_{\bullet}G; \underline{\mathbb{Z}})$ are the characteristic classes of G. Similiarly, $H^*(B_{\bullet}G; \mathbb{Z}(n))$ are differential characetristic classes of G.

Let G be a Lie group, and $B_{\bullet}G$ the classifying space. Then $H^*(B_{\bullet}G; \underline{\mathbb{Z}})$ are the characteristic classes of G. Similiarly, $H^*(B_{\bullet}G; \mathbb{Z}(n))$ are differential characetristic classes of G.

We will need the following key fact:

Theorem (Bott, Freed-Hopkins)

 $H^4(B_{\bullet}\mathrm{GL}_1^+(\mathbb{R});\mathbb{Z}(2))\simeq\mathbb{R}.$

Let G be a Lie group, and $B_{\bullet}G$ the classifying space. Then $H^*(B_{\bullet}G; \underline{\mathbb{Z}})$ are the characteristic classes of G. Similiarly, $H^*(B_{\bullet}G; \mathbb{Z}(n))$ are differential characetristic classes of G.

We will need the following key fact:

Theorem (Bott, Freed-Hopkins)

 $H^4(B_{\bullet}\mathrm{GL}_1^+(\mathbb{R});\mathbb{Z}(2))\simeq\mathbb{R}.$

They are the differential first Pontryagin classes.

2 Virasoro groups and central extensions

Consider the canonical $\text{Diff}^+(S^1)$ action on S^1 , note that

Consider the canonical $\operatorname{Diff}^+(S^1)$ action on S^1 , note that

 The quotient S¹/Diff⁺(S¹) has a map to B_•Diff⁺(S¹) = */Diff⁺(S¹). Since the action of Diff⁺(S¹) on S¹ is orientation preserving, this is a oriented S¹ fiber bundle.

Consider the canonical $\operatorname{Diff}^+(S^1)$ action on S^1 , note that

- The quotient S¹/Diff⁺(S¹) has a map to B_•Diff⁺(S¹) = */Diff⁺(S¹). Since the action of Diff⁺(S¹) on S¹ is orientation preserving, this is a oriented S¹ fiber bundle.
- The tangent bundle of S¹ gives a map TS¹: S¹ → B_•GL⁺₁(ℝ). Since the action of Diff⁺(S¹) on S¹ is smooth, the tangent bundle is Diff⁺(S¹)-equivariant. Equivalently, the tangent bundle factors through the quotient as a map TS¹: S¹/Diff⁺(S¹) → B_•GL⁺₁(ℝ).

To summarize, we have a span of maps:

Note the vertical map is a S^1 fibration, something we can integrate against. Therefore we get a map:

$$H^{4}(S^{1}/\operatorname{Diff}^{+}(S^{1}); \mathbb{Z}(2)) \longleftarrow H^{4}(B_{\bullet}\operatorname{GL}_{1}^{+}(\mathbb{R}); \mathbb{Z}(2))$$

$$\downarrow \int_{S^{1}} (8)$$

$$H^{3}(B_{\bullet}\operatorname{Diff}^{+}(S^{1}); \mathbb{Z}(1)).$$

Finally, we can state the conjecture of Freed and Hopkins that we proved:

Theorem (Y.L., Arun Debray, Christoph Weis)

The image of map $\mathbb{R} \simeq H^4(B_{\bullet}\mathrm{GL}_1^+(\mathbb{R}); \mathbb{Z}(2)) \to H^3(B_{\bullet}\mathrm{Diff}^+(S^1); \mathbb{Z}(1))$ are the Virasoro central extensions Vir_{λ} .

Furthermore, we explicitly recovers the Bott-Thurston cocylces when calculating the map on cocycles.

We construct explicit cocycles and compute the map on the level of cocycles.

We find 1-form cocycles for H⁴(B_●GL⁺₁(ℝ); Z(2)), using the canonical simplicial resolution of B_●GL⁺₁(ℝ).

We construct explicit cocycles and compute the map on the level of cocycles.

- We find 1-form cocycles for H⁴(B_●GL⁺₁(ℝ); Z(2)), using the canonical simplicial resolution of B_●GL⁺₁(ℝ).
- We pullback to 1-form cocycles on $S^1/\text{Diff}^+(S^1)$, using the simplicial realization of $S^1 = Fr_+(S^1)/\text{GL}_1^+(\mathbb{R})$, where $Fr_+(S^1)$ is the oriented frame bundle.

Here's the key point of the proof:

 Ω^1

• Now we move the cocycles across the double complex associated to the bisimplicial object $S^1/\text{Diff}^+(S^1) = \text{GL}_1^+(\mathbb{R}) \setminus Fr_+(S^1)/\text{GL}_1^+(\mathbb{R})$, to get cocycles on the simplicial resolution for $S^1/\text{Diff}^+(S^1)$.

$$\Omega^{1}(F \times \mathbb{R}^{\times 2})$$

$$\uparrow -\log(\gamma'_{1} \circ \gamma_{2}) \operatorname{d} \log(\gamma_{2})$$

$$\uparrow \Omega^{1}(\Gamma \times F \times \mathbb{R}) \longleftrightarrow \Omega^{1}(F \times \mathbb{R}) \downarrow$$

$$\Omega^{1}(\Gamma \times F \times \mathbb{R}) \longleftrightarrow \Omega^{1}(F \times \mathbb{R}) \downarrow$$

$$\uparrow \log \gamma' = 0$$

$$\downarrow \log(\nu) \operatorname{d} \log(\gamma')$$

$$\downarrow \log(\gamma') = 0$$

$$\downarrow \operatorname{d} \log(\nu)$$

$$(\Gamma^{\times 2} \times F) \longleftrightarrow \Omega^{1}(\Gamma \times F) \downarrow$$

$$\chi_{2} \operatorname{d} \chi_{1} \longleftrightarrow \operatorname{d} \log(\nu)$$

• Lastly, we integrate over S¹ and immediately see that we recover the Bott-Thurston cocycles! Q.E.D.

Thank you for listening!

Yu Leon Liu (Harvard University) Differential Cohomology and Virasoro Central