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@ The Virasoro groups describe space-time symmetries of 2d CFTs. As
such, it is important to physics (string theory, condensed matter) and
mathematics (geometric representation theory).
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@ The Virasoro groups describe space-time symmetries of 2d CFTs. As
such, it is important to physics (string theory, condensed matter) and
mathematics (geometric representation theory).

e Virasoro groups is a R family of central extension of Diff *(S?), the
group of orientation preserving smooth automorphism of S*.

@ The central extension is describe by the Bott-Thurston cocyle.

@ The goal of this talk is to give a novel geometric description these
central extensions, using differential cohomology, affirmativaly
answering a conjecture of Freed-Hopkins.
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Bott-Thurston cocycles

Recall that Diff (S?) is the group of orientation preserving smooth
automorphism of S1. It is an infinite-dimensional Frechet Lie group.
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Bott-Thurston cocycles

Recall that Diff (S?) is the group of orientation preserving smooth
automorphism of S1. It is an infinite-dimensional Frechet Lie group.

Definition

The Virasoro group Viry, for A € R, is a U(1) central extension of
Diff*(S?), described by the Bott-Thurston cocycle
B, : Diff*(St) x Diff*(St) — U(1):

Bx(11,72) = (~ o [ log0i o) d(og2))) (1)

for v1,7> € Diff 7(S?), viewed as morphisms St — S1.
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Central Extensions

Let's briefly review what is a central extension:
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Central Extensions

Let's briefly review what is a central extension:

Definition

Let G be a group and A be an abelian group, a central extension of G by A
is a group G with short exact sequence:

0-A=-G—-G—1 (2)

such that subgroup A C G is in the center, that is, it commutes with every
element of G. |
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Central extension as group cohomology: |

As many other things, central extensions can be classified by cohomology
groups:
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Proposition

Let G be a discrete group, then the isomorphism class of central extensions
of G by A is classified by group cohomology class H?>(G; A) ~ H?(BG; A),
where BG is the classifying space of G.
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As many other things, central extensions can be classified by cohomology
groups:

Proposition

Let G be a discrete group, then the isomorphism class of central extensions
of G by A is classified by group cohomology class H?>(G; A) ~ H?(BG; A),
where BG is the classifying space of G.

Given a cocycle class b € C?(G;A), viewed asamap b: G x G — A
satisying some cocycle conditions. Then G = G x A as a set, with
multiplication (g,a) - (g’,d') = (g-g’,a+ a3 + b(g,g’)).
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Central extension as group cohomology: |

As many other things, central extensions can be classified by cohomology
groups:

Proposition

Let G be a discrete group, then the isomorphism class of central extensions
of G by A is classified by group cohomology class H?>(G; A) ~ H?(BG; A),
where BG is the classifying space of G.

Given a cocycle class b € C?(G;A), viewed asamap b: G x G — A
satisying some cocycle conditions. Then G = G x A as a set, with
multiplication (g,a) - (g’,d') = (g-g’,a+ a3 + b(g,g’)).

The map G — G is (g,a) — &.
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Central extension as group cohomology: Il

Problem: Smooth U(1) central extensions of nondiscret Lie groups are NOT
classified by ordinary cohomology classes.
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Central extension as group cohomology: Il

Problem: Smooth U(1) central extensions of nondiscret Lie groups are NOT
classified by ordinary cohomology classes.

We need a cohomology theory that remembers the smooth structures.

The answer is differential cohomology.
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Sheaves on smooth manifolds

Let M be a manifold, then the ordinary cohomology groups H*(M; A)
depends only on the homotopy classes of M. It is the cohomology of the
constant sheave A on M. On the other hand, the i-th cohomology form on
M, Q(M) is sensitive to the smooth structure of M.
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Sheaves on smooth manifolds

Let M be a manifold, then the ordinary cohomology groups H*(M; A)
depends only on the homotopy classes of M. It is the cohomology of the
constant sheave A on M. On the other hand, the i-th cohomology form on
M, Q(M) is sensitive to the smooth structure of M.

We can view both constant sheaves and differential forms as sheaves on
Mfld, the site of smooth manifolds.

Even though Q' are not homotopy invariant, the chain complex of sheaves
Q*=0—-Q0 i> Q! i> ... is a homotopy invariant, in fact,

Theorem (de Rham)

The chain complex 2* is the constant sheave R, as a chain complex
concentrated in degree 0.
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Sheaves Z(n)

With this in mind, we define the (chain complex of ) sheave Z(n) as

Z(n=Z—-L - - ... Q" 0. (4)
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Sheaves Z(n)

With this in mind, we define the (chain complex of ) sheave Z(n) as
Z(n=Z—-L - - ... Q" 0. (4)

These sheaves Z(n) are both sensitive to topology (from Z) and the smooth
structure (from Q).

There is also a form of integration. let M be a closed oriented
d-dimensional manifold, then there is an integration map:

/M L H (M Z(n)) — H*9(x; Z(n — d)). (5)

There is also a relative version of this.
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Example: Z(1) and line bundles

A cocycle in C?(M;Z(1)) can be describe as follows: fix an open covering
{U;} of M, we have 0-form (R-valued functions) a on the open subsets

Uj = UiN U;, and Z-valued functions fj; on intersections Uy, such that
ajj — ajk + aik = fij-
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Example: Z(1) and line bundles

A cocycle in C?(M;Z(1)) can be describe as follows: fix an open covering
{U;} of M, we have 0-form (R-valued functions) a on the open subsets
Uj = UiN U;, and Z-valued functions fj; on intersections Uy, such that
ajj — ajk + aik = fij-

This precisely describe the data of a U(1) principal bundle on M!

Proposition

H?(M; Z(1)) is the group of isomorphism classes of U(1) principal bundles
on M.

Furthermore, H?(M; Z(2)) is the group of isomorpism classes of U(1)
principal bundles with connections on M (Hint: for the cocycle here we
need also 1-form «; on U;, with a; — o = dayj).
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Z(1) and central extensions

While H?(—; Z(1)) classifies U(1) principal bundle, H3(—; Z(1)) classifies
U(1) central extensions:
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Z(1) and central extensions

While H?(—; Z(1)) classifies U(1) principal bundle, H3(—; Z(1)) classifies
U(1) central extensions:

Let G be a smooth (possibly infinite dimensional) Lie group, BeG its
classifying space. Then H3(BG;Z(1)) classifies smooth central extensions

of G by U(1).

B. G is the classifying space of G, viewed as a sheave on Mfld.
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Differential characteristic classes

Let G be a Lie group, and B,G the classifying space. Then H*(B,G;Z) are
the characteristic classes of G. Similiarly, H*(B,G; Z(n)) are differential
characetristic classes of G.
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Let G be a Lie group, and B,G the classifying space. Then H*(B,G;Z) are
the characteristic classes of G. Similiarly, H*(B,G; Z(n)) are differential
characetristic classes of G.

We will need the following key fact:

Theorem (Bott, Freed-Hopkins)
H*(B,GL{ (R); Z(2)) ~ R.
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Differential characteristic classes

Let G be a Lie group, and B,G the classifying space. Then H*(B,G;Z) are
the characteristic classes of G. Similiarly, H*(B,G; Z(n)) are differential
characetristic classes of G.

We will need the following key fact:

Theorem (Bott, Freed-Hopkins)
H*(B,GL{ (R); Z(2)) ~ R.

They are the differential first Pontryagin classes.
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Key ldea |

We want to get a R family of central extension of Diff *(St) by U(1),

therefore we want a R family in H3(B,Diff *(S1), Z(1)). We get this by
pullback and integration:
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Key ldea |

We want to get a R family of central extension of Diff *(St) by U(1),
therefore we want a R family in H3(B,Diff *(S1), Z(1)). We get this by
pullback and integration:

Consider the canonical Diff *(S!) action on S?, note that

@ The quotient S*/Diff " (S) has a map to B,Diff (S') = /Diff *(S!).
Since the action of Diff t(S!) on S! is orientation preserving, this is a
oriented S fiber bundle.

@ The tangent bundle of S! gives a map TS!: S — B,GL{ (R). Since
the action of Diff7(S!) on S! is smooth, the tangent bundle is
Diff *(S1)-equivariant. Equivalently, the tangent bundle factors
through the quotient as a map TS : S1/Diff *(S1) — B,GL] (R).
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Key Idea Il

To summarize, we have a span of maps:

S1/Diff+(S!) -5 B,GL] (R)

l (7)

B,Diff t(S1).

Note the vertical map is a S fibration, something we can integrate against.
Therefore we get a map:

H*(S'/Diff T (SY); Z(2)) +—— H*(B.GL{ (R); Z(2))
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Finally, we can state the conjecture of Freed and Hopkins that we proved:

Theorem (Y.L., Arun Debray, Christoph Weis)

The image of map R ~ H*(B,GL{ (R); Z(2)) — H3(B,Diff*(51); Z(1))
are the Virasoro central extensions Viry,.

Furthermore, we explicitly recovers the Bott-Thurston cocylces when
calculating the map on cocycles.
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Proof sketch |

We construct explicit cocycles and compute the map on the level of
cocycles.

e We find 1-form cocycles for H*(B,GL; (R); Z(2)), using the canonical
simplicial resolution of B,GL] (R).
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Proof sketch |

We construct explicit cocycles and compute the map on the level of
cocycles.

e We find 1-form cocycles for H*(B,GL; (R); Z(2)), using the canonical
simplicial resolution of B,GL] (R).

o We pullback to 1-form cocycles on S*/Diff™(S?), using the simplicial
realization of S = Fr(S')/GL] (R), where Fry(S?) is the oriented
frame bundle.
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Proof sketch Il

Here's the key point of the proof:

@ Now we move the cocycles across the double complex associated to the
bisimplicial object St/Diff*(S!) = GL{ (R)\Fr(S)/GL{ (R), to get
cocycles on the simplicial resolution for S1/Diff*(S?).

QU(F x R*?)
—log(1 0 72) d log(72)

QYT x F x R) +— QYF xR)

xlogy'= log(v) dlog(’)
xlogy' =0

QY2 x F) «— QYT x F)
Xxodxg «— x dlog(v)

Yu Leon Liu (Harvard University) April 2rd 2022 21/23



Proof sketch Il

o Lastly, we integrate over S! and immediately see that we recover the
Bott-Thurston cocycles! Q.E.D.
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Thank you for listening!
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