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End Goal: Symmetry Breaking Long Exact Sequence

G: symmetry group.
p: symmetry breaking pattern of dimension k
D: dimension of spacetime.

S(p): sphere of p-representation.

Q%: cohomology group classifying G-SPTs.

Qg Qg*(S(p))
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Background on Anomalies

't Hooft Anomalies

Consider a D-dim’l theory Z with symmetry G. What does its 't Hooft anomaly 3
represent?

@ [ is the obstruction to gauging the G symmetry.

@ [ is the obstruction to gauge-invariantly coupling Z to G-gauge fields.

@ (3 is the obstruction for Z to be symmetrically nondegenerately gapped, that is, to
symmetrically deforming Z to have a nondegenerate gapped ground state.

@ Bulk-boundary: §is a D 4+ 1-dim’'l SPT and Z is a boundary theory of 5.

@ Mathematical classification: the anomaly 5 € Qg“ lives in a cohomology class
(more on this in the math section) [Kap14; Kap+15; FH21].
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Background on Anomalies

Families of Anomalies

Anomalies can also appear in families [TE18; Kom+19; Thol7; Cér+20; KS20;
HKT20a; Wen+-21].

@ Suppose Z[¢] depends on a parameter ¢ € M. Then we can couple Z to a
background field ¢(x). The anomaly /3 is the obstruction for the partition
function Z[¢(x)] to be consistently defined for all ¢. If it is anomalous, the
partition function is a section of a non-trivial line bundle.

@ The family anomaly f is an obstruction to deforming Z[¢] such that Z[¢] is
nondegeneratedly gapped for all values of ¢ € M.

@ Note that G can act on M, in which case we want to equivariantly deform Z.
e Mathematical classification: 3 € QEG)H(M).
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symmetry breaking parameter ¢ transforming in the representation p?
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ground state for large enough radius R =3 _; ;]2
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Motivation: p-gappability

o Consider a D-dim’l theory Z with G symmetry and anomaly 5 # 0 € Qg“. In the
absence of gravitational anomalies we expect that we can gap Z by breaking G.

@ Question: Let p be a k-dim’'l representation of G. Can we gap the theory using a
symmetry breaking parameter ¢ transforming in the representation p?

Definition

A theory is p-gappable if there are order parameters (01, Oy, ..., Ok), transforming in p
under G, such that H¢, o) =Ho+>_; ¢ [ dPx0Oj(x) has a gapped, nondegenerate
ground state for large enough radius R =3 _; ;]2

o e.g.: Consider a 3+ 1D Dirac fermion ¢ with anomalous G = U(1), symmetry. It
is p-gappable for p = 1, given by the Dirac mass terms (O1 = 1), Oy = ipy>)).
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@ Question: Do we have an anomaly interpretation of p-gappability?

@ View Z as a theory trivially coupled to ¢ € M = S(p), to p-gap the theory means
to (equivariantly) gap this family of theories over the sphere S(p).

@ On anomalies, there is a residual anomaly map:

Res,: Q2 — Q2F1(S(p)).
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p-gappability and Residual Anomalies

o If p is the trivial representation, then Z is p-gappable if it is symmetrically
gappable, equivalently, if the anomaly g = 0.

@ Question: Do we have an anomaly interpretation of p-gappability?

@ View Z as a theory trivially coupled to ¢ € M = S(p), to p-gap the theory means
to (equivariantly) gap this family of theories over the sphere S(p).

@ On anomalies, there is a residual anomaly map:
D D
Res,: Q2T — Q2*1(S(p)).
@ Res,(f) is the obstruction to gapping Z over S(p):

Z is p-gappable if and only if Res,(3) = 0. |
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o Take pg be the sign representation. Then the theory is po-gappable via the T-odd
mass term O = ).
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@ Let's do an example where the theory is not p-gappable.
@ Consider a 2 + 1D Majorana fermion 1) with time reversal symmetry T.

o Take pg be the sign representation. Then the theory is po-gappable via the T-odd
mass term O = ).

e Take p = po @ po. Is the theory p-gappable? That is, can we find two T-odd
operators 01, O such that

Ho + rsin(0)O1 + rcos(0)Oa

is gapped for any 6 and large enough r?
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Example: 2 + 1D Majorana Fermion

@ Let's do an example where the theory is not p-gappable.
@ Consider a 2 + 1D Majorana fermion 1) with time reversal symmetry T.

o Take pg be the sign representation. Then the theory is po-gappable via the T-odd
mass term O = ).

e Take p = po @ po. Is the theory p-gappable? That is, can we find two T-odd
operators 01, O such that

Ho + rsin(0)O1 + rcos(0)Oa

is gapped for any 6 and large enough r?

@ We claim that the answer is no! There are no operators 01, O, that can make
this happen!
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e Trivial example: O1 = Oy = Y1),

e Clearly this is not gapped at §# = +37/4 where m = 0. Going from m < 0 to
m > 0 pumps a p + ip superconductor. Going from m > 0 to m < 0 pumps a
p — ip.
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Example: 2 + 1D Majorana Fermion I

e Trivial example: O1 = Oy = Y1),

e Clearly this is not gapped at §# = +37/4 where m = 0. Going from m < 0 to
m > 0 pumps a p + ip superconductor. Going from m > 0 to m < 0 pumps a
p — ip.

@ Claim: The number of p & ip pumped mod 2 across half an arc is an invariant.
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@ Let's check this on anomalies. The Majorana fermion's anomaly is

le Qéhﬁ = Z16 [Wit16]. Q‘liinJr(Sl) = Z counts the number of p + ip mod 2
across the arc.
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@ Our example above fixes the residual anomaly map
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@ Consequence I: For any choices of T-odd Oy, O,, the number of p £ ip's pumped
across half an arc is odd.
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Anomaly Analysis

@ Let's check this on anomalies. The Majorana fermion's anomaly is
le Qéhﬁ = Z16 [Wit16]. Q‘liinJr(Sl) = Z counts the number of p + ip mod 2
across the arc.

@ Our example above fixes the residual anomaly map

Res,: Q‘P‘,in+ — Q“Pm+ (Sh)

Zl6—>z2
B=1r——31#0

@ Consequence I: For any choices of T-odd Oy, O,, the number of p £ ip's pumped
across half an arc is odd.

@ Consequence Il: The 2 4+ 1D Majorana fermion is not p-gappable.
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Recap |

Qg " Res, Q2(S(p))
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@ Question: Assume that Z is p-gappable (Res,(3) = 0). What can the anomaly
tell us?

@ This question was answered in [HKT20b] (in the case that G = Z»):

e Given a p-gapping, where the the order parameter is ¢ € V), we can create a
defect system by letting ¢ vary in space with the form:

¢ = (V1X1 + ...+ Vka)/\/§

for large R = Zixiz, where the v; form an orthonormal basis of V.
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@ Question: Assume that Z is p-gappable (Res,(3) = 0). What can the anomaly
tell us?

@ This question was answered in [HKT20b] (in the case that G = Z»):

e Given a p-gapping, where the the order parameter is ¢ € V), we can create a
defect system by letting ¢ vary in space with the form:

¢ = (V1X1 + ...+ Vka)/\/ﬁ

for large R = Zixiz, where the v; form an orthonormal basis of V.

@ The defect is localized at x; = - -+ = x, = 0. Since the system is p-gapped,
excitations are localized at the defect, which we view as a (D — k)-dim’l system.
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Topological Defects

@ Question: Assume that Z is p-gappable (Res,(3) = 0). What can the anomaly
tell us?

@ This question was answered in [HKT20b] (in the case that G = Z»):

e Given a p-gapping, where the the order parameter is ¢ € V), we can create a
defect system by letting ¢ vary in space with the form:

¢ = (V1X1 + ...+ Vka)/\/ﬁ

for large R = Zixiz, where the v; form an orthonormal basis of V.

@ The defect is localized at x; = - -+ = x, = 0. Since the system is p-gapped,
excitations are localized at the defect, which we view as a (D — k)-dim’l system.

e Examples: domain walls (k = 1), vortices (k = 2), and hedgehogs (k = 3).
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Defect Anomaly Matching

@ Since ¢ =0 € V, is a fixed point under G, the defect theory Zp has G, symmetry
1 and anomaly a € Qg:l_k.

There is a twisting of the G action by p, we may revisit this in the math section
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@ Since ¢ =0 € V, is a fixed point under G, the defect theory Zp has G, symmetry
1 and anomaly a € Qg:l_k.

@ There is a defect anomaly map

. OD+1-k D+1
Def,: Q217K — 2+1,

There is a twisting of the G action by p, we may revisit this in the math section
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Defect Anomaly Matching

@ Since ¢ =0 € V, is a fixed point under G, the defect theory Zp has G, symmetry
1 and anomaly a € ngl_k.

@ There is a defect anomaly map
. QD+1-k D+1
Def,: QG: — Q2.
@ The anomaly matching condition [HKT20b]:

Def (o) = 5. ]

There is a twisting of the G action by p, we may revisit this in the math section
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Example: 3 + 1D Dirac Fermions

e Consider a 3 + 1D Dirac fermion ¢ with G = U(1),. Its anomaly polynomial is
1 3 1
B =gla) = 5 ap(TX),

where pj is the first Pontryagin number and X is the 6D test manifold with a
principal U(1), bundle P. 2

2Anomaly polynomials are D + 2 dimensional characteristic classes whose Chern-Simons form is the
anomaly.
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Example: 3 + 1D Dirac Fermions

e Consider a 3 + 1D Dirac fermion ¢ with G = U(1),. Its anomaly polynomial is

1
B = 6(C1)3 - 24C1P1(TX),

where pj is the first Pontryagin number and X is the 6D test manifold with a
principal U(1), bundle P. 2

@ Let p = 1. The Dirac mass gives a p-gapping and the defect is the axion string

[CH85]. A 1+ 1D chiral fermion is localized on the axion string with fractional
charge %

2Anomaly polynomials are D + 2 dimensional characteristic classes whose Chern-Simons form is the
anomaly.



Physics of SBLESs
00000000 e0000000000

Symmetry Breaking Long Exact Sequence

Example: 3 + 1D Dirac Fermions

e Consider a 3 + 1D Dirac fermion ¢ with G = U(1),. Its anomaly polynomial is
5= 2(@) — yam(TX),
where pj is the first Pontryagin number and X is the 6D test manifold with a
principal U(1), bundle P. 2
@ Let p = 1. The Dirac mass gives a p-gapping and the defect is the axion string
[CH85]. A 1+ 1D chiral fermion is localized on the axion string with fractional

charge %
@ The defect anomaly polynomial is
1, - 1
== ——pm(TY 1
o= (@) - m(TY), 1)

where Y is the zero section of a generic section s: X — E, = P Xy, V).

2Anomaly polynomials are D + 2 dimensional characteristic classes whose Chern-Simons form is the
anomaly.
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e To compute Def,(a), we have
Def, (o) = crax

1
=(a)’ - saP(TY).
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Example: 3 + 1D Dirac Fermions Il

e To compute Def,(a), we have
Def, (o) = crax

1
=(a)’ - saP(TY).

@ To relate TY and TX, we use the following formula:

TX|y = TY @ E)ly, pi(TX)=pi(TY)+ (a1)
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Example: 3 + 1D Dirac Fermions Il

e To compute Def,(a), we have
Def, (o) = crax

1
=(a)’ - saP(TY).

@ To relate TY and TX, we use the following formula:
TX|y = TY @ Ely, pi(TX)=pi(TY) +(a1)”

o Plugging in, we get

Defp(a) = é(c1)3 — iqpl(TX) = ﬁ
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QD+ - Q271(S(p)

Res,

Def),

D+1—k
QG
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Recap |l

QD+ - Q271(S(p)

Res,

Def),

D+1-k
o
o This is exact at Q27 i.e., Res,(3) = 0 if and only if there is an o € ngl_k
such that g = Def,(a).
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Recap |l

QD+ - Q271(S(p)

Res,

Def),

D+1—k
Q2

o This is exact at Q27 i.e., Res,(3) = 0 if and only if there is an o € ngl_k
such that g = Def,(a).

@ [ is the anomaly of the defect system created via the p-gapping.
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Ambiguity in Defect Anomaly Matching

@ The defect anomaly determines the bulk. However, this map is not injective:
there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory
Z with 8 = 0 can have anomalous defects!
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there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory
Z with 8 = 0 can have anomalous defects!

@ Question: What is the ambiguity in the defect anomaly map?
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Ambiguity in Defect Anomaly Matching

@ The defect anomaly determines the bulk. However, this map is not injective:
there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory
Z with 8 = 0 can have anomalous defects!

@ Question: What is the ambiguity in the defect anomaly map?
@ The defect comes from a p-gapping, which assigns a nondegenerate ground state
to each point on the sphere S(p). This invertible family is not typically free of

G-anomalies, but it is when 8 = 0. Therefore the p-gapping defines a D-dim’l
SPT class

7 € Q2(S(p))



Physics of SBLESs
000000000000 e000000

Symmetry Breaking Long Exact Sequence

D — 1-dim’l Boundary Theory

@ We can also construct a dynamical theory with anomaly ~:
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D — 1-dim’l Boundary Theory

@ We can also construct a dynamical theory with anomaly ~:
@ Recall our p-gapping Hamiltonian:

Hie,....cry = Ho + ch/de(’)j(x)
J

Since Z is anomaly-free, let's assume Hy has a symmetric non-degenerate ground
state. Hq,,... ¢, is also gapped for large R =} il
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D — 1-dim’l Boundary Theory

@ We can also construct a dynamical theory with anomaly ~:
@ Recall our p-gapping Hamiltonian:

Hie,....cry = Ho + ch/de(’)j(x)
J

Since Z is anomaly-free, let's assume Hy has a symmetric non-degenerate ground
state. Hq,,... ¢, is also gapped for large R =} il

@ If v describes a nontrivial SPT, then there is some point (ci, ..., ¢,) with radius
r < R such that H, . ,) fails to be nondegenerately gapped.
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D — 1-dim’l Boundary Theory

@ We can also construct a dynamical theory with anomaly ~:
@ Recall our p-gapping Hamiltonian:

Hie,....cry = Ho + ch/de(’)j(x)
J

Since Z is anomaly-free, let's assume Hy has a symmetric non-degenerate ground
state. Hq,,... ¢, is also gapped for large R =} il

@ If v describes a nontrivial SPT, then there is some point (ci, ..., ¢,) with radius
r < R such that H, . ,) fails to be nondegenerately gapped.

G

([
!
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Index Anomaly Matching

@ The theory H, ., for ZJ- lcj|> = ris a D — 1 dim’'l theory with parameter space
S(p), whose family anomaly is v € QP(5(p)).



Physics of SBLESs
0000000000000 e00000

Symmetry Breaking Long Exact Sequence

Index Anomaly Matching

@ The theory H, ., for ZJ- lcj|> = ris a D — 1 dim’'l theory with parameter space
S(p), whose family anomaly is v € QP(S(p)).
@ The defect is created by shrinking the D — 1 theory on S(p) to a point.
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Index Anomaly Matching

@ The theory H, ., for ZJ- lcj|> = ris a D — 1 dim’'l theory with parameter space
S(p), whose family anomaly is v € QP(S(p)).
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e On anomalies, this is the generalization of Callias index theorem [Cal78; BS78],
which counts the fermion zero modes at the core of a mass defect.
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Index Anomaly Matching

@ The theory H, ., for ZJ- lcj|> = ris a D — 1 dim’'l theory with parameter space
S(p), whose family anomaly is v € QP(S(p)).
@ The defect is created by shrinking the D — 1 theory on S(p) to a point.

e On anomalies, this is the generalization of Callias index theorem [Cal78; BS78],
which counts the fermion zero modes at the core of a mass defect.

@ There is an index map

Ind,: Q2(S(p)) — ngl_k.
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Symmetry Breaking Long Exact Sequence

Index Anomaly Matching

The theory H, .., for ZJ- lcj|> = ris a D — 1 dim’'l theory with parameter space
S(p), whose family anomaly is v € QP(S(p)).

The defect is created by shrinking the D — 1 theory on S(p) to a point.

On anomalies, this is the generalization of Callias index theorem [Cal78; BS78],
which counts the fermion zero modes at the core of a mass defect.

@ There is an index map
Ind,: Q2(S(p)) — ngl_k.
@ Index anomaly matching:

Ind,(y) = 6. |
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Example: Thouless Pump

o Consider a 1+ 1D Dirac fermion v with anomaly-free U(1)y. There is a
symmetry preserving (p = R?) Dirac mass term

cos(¢)Ytp + isin(¢) Py b,
’YC — I"}/O’)/l.
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Example: Thouless Pump

o Consider a 1+ 1D Dirac fermion v with anomaly-free U(1)y. There is a
symmetry preserving (p = R?) Dirac mass term

cos(p)ip + isin(p)hy e,

’YC — I"}/O’)/l.
@ This defines a non-trivial SPT v = Ad¢.
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Example: Thouless Pump

o Consider a 1+ 1D Dirac fermion v with anomaly-free U(1)y. There is a
symmetry preserving (p = R?) Dirac mass term

cos(p)ip + isin(p)hy e,

’YC — I"}/O’)/l.
@ This defines a non-trivial SPT v = Ad¢.
e Adding a mass term 1)1 so Hy is gapped, we have

(X + 1)1;¢ + 'YT/_WCT/) C H(X,y)-

This family fails to be gapped at (x = —1,y = 0), where the fermion becomes
massless.
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Symmetry Breaking Long Exact Sequence

Example: Thouless Pump

o Consider a 1+ 1D Dirac fermion v with anomaly-free U(1)y. There is a
symmetry preserving (p = R?) Dirac mass term

cos(¢)yip + i sin(@)r e,
’YC — I"}/O’)/l.
@ This defines a non-trivial SPT v = Ad¢.
e Adding a mass term 1)1 so Hy is gapped, we have

(X + 1)1;¢ + 'YT/_WC%Z) C H(X,y)-

This family fails to be gapped at (x = —1,y = 0), where the fermion becomes
massless.

o Viewing the S' parameter theory at r = 1 as the boundary of 7, we see that when
we adiabatically vary the S parameter ¢, we pump a quantized charge to the
boundary [Tho83].
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Example: Thouless Pump Il

@ The p-defect is the operator that creates a vortex in ¢. It carries an unit charge
under U(1), matching the Thouless pump.
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Example: Thouless Pump Il

@ The p-defect is the operator that creates a vortex in ¢. It carries an unit charge
under U(1), matching the Thouless pump.

@ On anomalies:

Indp . Q%pinc (51) i) Qépinc

7 —— 7.



Physics of SBLESs
0000000000000 00e000
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Example: Thouless Pump Il

@ The p-defect is the operator that creates a vortex in ¢. It carries an unit charge
under U(1), matching the Thouless pump.

@ On anomalies:
Ind,,: Q2 (51) —=5 0l

Spin€ Spin€

7Z — 7.

@ The first group counts the charges pumped when we vary S parameter ¢; the
latter computes the U(1) charge of the ¢-vortex.
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Recap Il

@ We have a sequence of maps:

Ind _ 4 Def R
Q2(S(p)) =2 QZF = Q2 == Q2 (S(p))
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Recap Il

@ We have a sequence of maps:

Ind _ 4 Def R
Q2(S(p)) =2 QZF = Q2 == Q2 (S(p))

e This is exact at ngl_k: Def (o) = 0 if and only if @ = Ind,(7y) for some
v € QE(S(p)).
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Symmetry Breaking Long Exact Sequence

Recap Il

@ We have a sequence of maps:

Ind _ 4 Def R
Q2(S(p)) =2 QZF = Q2 == Q2 (S(p))

e This is exact at ngl_k: Def (o) = 0 if and only if @ = Ind,(7y) for some

v € Q2(5(p)).
@ Rolling over:
Res Ind _
2 2, 92(5(p)) 2, @RIk,
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Recap Il

@ We have a sequence of maps:

Ind _ 4 Def R
Q2(S(p)) =2 QZF = Q2 == Q2 (S(p))

e This is exact at ngl_k: Def (o) = 0 if and only if @ = Ind,(7y) for some

v € Q2(S(p)).
@ Rolling over:
Res Ind _
Q¢ — Q¢(S(p)) —> Q"

o This is exact at Q2(S(p)).
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Completing the Circle

@ We can infinitely continue this long exact sequence:

Res Ind _ . Def Res Ind _
02 1, 00 (5(p)) 1 ik P g R, o1,y M, gDk
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Completing the Circle

@ We can infinitely continue this long exact sequence:

Res Ind _ . Def Res Ind _
0 1 qb(s(p)) 0 Rk P, gDt B, () I, Ok

Qo+ » Q2+1(5(p))
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Completing the Circle

@ We can infinitely continue this long exact sequence:

R Ind Def R Ind
Q2 = Q8(S(p)) = QZTH =5 Qg == QgH(S(p)) = QgHTE

Qgt! » Q¢ EH(S(p))

Res,
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@ How to mathematically derive the SBLES

@ How to apply it
@ Computing Def, to perform anomaly matching
@ Computing anomaly groups
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Part Il: Math and Applications

@ How to mathematically derive the SBLES

@ How to apply it
@ Computing Def, to perform anomaly matching
@ Computing anomaly groups
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Deriving the SBLES

SBLES as Induced by a Map of Spectra

* D+1
MTSpin A BG < MTSpin A S(p)P"¢ Q¢

/Z I* h I //
- CONOMOIO] -
L congmeesy Def Ind -
/, //
// //
// //
- L

MTSpin A BG? QP+1-k
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SBLES as Induced by a Map of Spectra

@ Specialize to fermions.

* D+1 D+1
MTSpin A BG < MTSpin A S(p)P"¢ Q¢ Res, Q¢ (S(p)
Pt e
//// Iy cohwology Def Ind///
//// k/
MTSpin A BGP QD+1-k
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Deriving the SBLES

SBLES as Induced by a Map of Spectra

@ Specialize to fermions.

take cohomology
A

o Idea: Fiber sequence of spectra long exact sequence

* D+1 D+1
MTSpin A BG < MTSpin A S(p)P"¢ Q¢ Res, Qe (S(p))
Pt s
/’/ i cohomology Def ind -~
//// k//
MTSpin A BGP QD+1-k
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Deriving the SBLES

Example SBLES and Map of Spectra

Running example:

i D+1 D+1
TP e ATSpin A S0 Q2f), Foe Q;5.¢(5(0))
P -
/// Iy cthTology Def Ind///
//// k//
MTSpin A BZ/2 U far
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Deriving the SBLES

Example SBLES and Map of Spectra

Running example:

o QD1 — Dt fermions with internal time-reversal symmetry with 72 = (—1)F

Pint 7.)2,f
. D+1 D11
MTPin* +—— MTSpin A S(o)P"¢ Q. or Res, Q)5 ¢(S(o))
2t -
/// Iy cohj;nology Def lnd///
// k’/
MTSpin A BZ/2 QDb+1-k
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Example SBLES and Map of Spectra

Running example:

D+1 _ oD+1
° Qi =y

@ Symmetry-breaking order parameter: p = o, the sign representation of Z/2

fermions with internal time-reversal symmetry with 72 = (—1)F

i D+1 D+1
TP e ATSpin A S0 Q2f), Foe Q;5.¢(5(0))
P -
/// Iy cohwology Def Ind///
//// k//
MTSpin A BZ/2 U far
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Deriving the SBLES

Example SBLES and Map of Spectra

Running example:

D+1 _ oD+1
° Qi =y

@ Symmetry-breaking order parameter: p = o, the sign representation of Z/2

fermions with internal time-reversal symmetry with 72 = (—1)F

° Qstian/z :QZD/zpf: fermions with internal Z/2 unitary symmetry U? = 1.

i D+1 D+1
TP e ATSpin A S0 Q2f, Foe Q;5.¢(5(0))
P -
/// Iy cohwology Def Ind///
//// k//
MTSpin A BZ/2 U far
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Tangential Structures

o A stable tangential structure is a map £: B — BO. B
A manifold X has &-structure if the classifying map f of - 3
TX has a lift to the space B.

Examples:
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Tangential Structures

o A stable tangential structure is a map £: B — BO. B
A manifold X has &-structure if the classifying map f of - 3
TX has a lift to the space B.

Examples:

@ B = BSO: bosonic theories
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Deriving the SBLES

Tangential Structures

o A stable tangential structure is a map £: B — BO. B
A manifold X has &-structure if the classifying map f of - 3
TX has a lift to the space B.

Examples:

@ B = BSO: bosonic theories
@ B = BSpin A BG: fermionic theories with G-symmetry
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Tangential Structures

o A stable tangential structure is a map £: B — BO. . B
A manifold X has &-structure if the classifying map f of /f,// ¢
TX has a lift to the space B. % f BO

Examples:
@ B = BSO: bosonic theories
@ B = BSpin A BG: fermionic theories with G-symmetry

e B = BSpin x BZ/2: fermionic with internal unitary symmetry U? =1

e B = BPin™: fermionic with internal time reversal symmetry T2 = (—1)F
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Deriving the SBLES

Tangential Structures

@ A stable tangential structure is a map &: B — BO. . B
A manifold X has &-structure if the classifying map f of /f,// ¢
TX has a lift to the space B. x . BO

Examples:

@ B = BSO: bosonic theories

@ B = BSpin A BG: fermionic theories with G-symmetry
e B = BSpin x BZ/2: fermionic with internal unitary symmetry U? =1
o B = BPin™: fermionic with internal time reversal symmetry T2 = (—1)

e B = BSpin x BU(1): fermionic with internal U(1) symmetry

F
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Deriving the SBLES

Tangential Structures

@ A stable tangential structure is a map &: B — BO. . B
A manifold X has &-structure if the classifying map f of /f,// ¢
TX has a lift to the space B. % f BO

Examples:

@ B = BSO: bosonic theories
@ B = BSpin A BG: fermionic theories with G-symmetry

e B = BSpin x BZ/2: fermionic with internal unitary symmetry U? =1

e B = BPin™: fermionic with internal time reversal symmetry T2 = (—1)F

e B = BSpin x BU(1): fermionic with internal U(1) symmetry

@ B = BSpin®: complex fermionic with fractional charge
b
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Madsen-Tillman Spectra and Anomalies

e Fix a stable tangential structure £: B — BO (e.g. £: BPin™ — BO for fermions
with T2 = (=1)F)
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Madsen-Tillman Spectra and Anomalies

e Fix a stable tangential structure £: B — BO (e.g. £: BPin™ — BO for fermions
with T2 = (=1)F)

e "Definition”: The Madsen-Tillman spectrum MTE is the Thom spectrum of the
inverse of &, written B~¢. (e.g. MTPin™)
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Madsen-Tillman Spectra and Anomalies

e Fix a stable tangential structure £: B — BO (e.g. £: BPin™ — BO for fermions
with T2 = (=1)F)

e "Definition”: The Madsen-Tillman spectrum MTE is the Thom spectrum of the
inverse of &, written B~¢. (e.g. MTPin™)

@ ldea: The Madsen-Tillman spectrum MT¢ is such that
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Deriving the SBLES

Madsen-Tillman Spectra and Anomalies

e Fix a stable tangential structure £: B — BO (e.g. £: BPin™ — BO for fermions
with T2 = (=1)F)

e "Definition”: The Madsen-Tillman spectrum MTE is the Thom spectrum of the
inverse of &, written B~¢. (e.g. MTPin™)

@ ldea: The Madsen-Tillman spectrum MT¢ is such that

anomaly groups
of D-dim’l theories = IZD+2(MT£)
with symmetry (B, §)
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Madsen-Tillman Spectra and Anomalies

e Fix a stable tangential structure £: B — BO (e.g. £: BPin™ — BO for fermions
with T2 = (=1)F)

e "Definition”: The Madsen-Tillman spectrum MTE is the Thom spectrum of the
inverse of &, written B~¢. (e.g. MTPin™)

@ ldea: The Madsen-Tillman spectrum MT¢ is such that

anomaly groups @ e.g. MTPin" is such that...
of D-dim’l theories = IZD+2(MT£)
with symmetry (B, §)
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Madsen-Tillman Spectra and Anomalies

e Fix a stable tangential structure £: B — BO (e.g. £: BPin™ — BO for fermions
with T2 = (=1)F)

e "Definition”: The Madsen-Tillman spectrum MTE is the Thom spectrum of the
inverse of &, written B~¢. (e.g. MTPin™)

@ ldea: The Madsen-Tillman spectrum MT¢ is such that

anomaly groups @ eg. MTPin™ is such that...
of D-dim’l theories = IZD+2(MT£) e I3(MTPin") 2~ 7Z/16
with symmetry (B, §) (2 4 1D Majorana)
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Deriving the SBLES

Madsen-Tillman Spectra and Anomalies

e Fix a stable tangential structure £: B — BO (e.g. £: BPin™ — BO for fermions
with T2 = (=1)F)

e "Definition”: The Madsen-Tillman spectrum MTE is the Thom spectrum of the
inverse of &, written B~¢. (e.g. MTPin™)

@ ldea: The Madsen-Tillman spectrum MT¢ is such that

anomaly groups @ eg. MTPin™ is such that...
of D-dim’l theories = IZD+2(MT£) e I3(MTPin") 2~ 7Z/16
with symmetry (B, §) (2 4 1D Majorana)

Theorem (Pontrjagin-Thom)
Td(MTE) = Qg = {manifolds with (B, §)-structure}/ ~.

v
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Deriving the SBLES

Madsen-Tillman Spectra and Anomalies

e Fix a stable tangential structure £: B — BO (e.g. £: BPin™ — BO for fermions
with T2 = (=1)F)

e "Definition”: The Madsen-Tillman spectrum MTE is the Thom spectrum of the
inverse of &, written B~¢. (e.g. MTPin™)

@ ldea: The Madsen-Tillman spectrum MT¢ is such that

anomaly groups @ eg. MTPin™ is such that...
of D-dim’l theories = IZD+2(MT£) e I3(MTPin") 2~ 7Z/16
with symmetry (B, §) (2 4 1D Majorana)

o m(MTPint) = Qbin" =~ 7/2
(Klein bottle)

Theorem (Pontrjagin-Thom)
Td(MTE) = Qg = {manifolds with (B, §)-structure}/ ~.
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Madsen-Tillman Spectra and Anomalies—Takeaway

o ldea: The Madsen-Tillman spectrum MTE¢ is such that

Ansatz ([FH21])

anomaly groups °
for D-dim’l theories » = IPT2(MT¢) = Qg“ °
with symmetry (B, &)

_ ’
v
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@ Recall MT¢ = B¢,
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Fiber Sequence

o Recall MT¢ = B¢,

Proposition

Let p: S(p) — B be the projection. There is a (co)fiber sequence of spectra

S(p)P¢ — B¢ SR g—&+p.




Math and Applications
000000800

Deriving the SBLES

Fiber Sequence

o Recall MT¢ = B¢,

Proposition
Let p: S(p) — B be the projection. There is a (co)fiber sequence of spectra

S(p)P¢ — B¢ SR g—&+p.

@ Idea: The Smith map sm, is a map of spectra that
comes from taking the zero section of p.
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Fiber Sequence

o Recall MT¢ = B¢,

Proposition
Let p: S(p) — B be the projection. There is a (co)fiber sequence of spectra

S(p)P¢ — B¢ SR g—&+p.

@ Idea: The Smith map sm, is a map of spectra that
comes from taking the zero section of p.

@ Note: sm, induces Def,
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Deriving the SBLES

Fiber Sequence

o Recall MT¢ = B¢,

Proposition
Let p: S(p) — B be the projection. There is a (co)fiber sequence of spectra

S(p)P¢ — B¢ SR g—&+p.

@ Idea: The Smith map sm, is a map of spectra that
comes from taking the zero section of p.

@ Note: sm, induces Def,
@ A cofiber sequence of spaces is like a quotient:

5(p)+ — D(p)+ — S” = D(p)/S(p)
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Deriving the SBLES

Fiber Sequence

o Recall MT¢ = B¢,

Proposition
Let p: S(p) — B be the projection. There is a (co)fiber sequence of spectra

S(p)P¢ — B¢ SR g—&+p.

@ Idea: The Smith map sm, is a map of spectra that
comes from taking the zero section of p.

@ Note: sm, induces Def,
@ A cofiber sequence of spaces is like a quotient: - @ -

5(p)+ — D(p)+ — S” = D(p)/S(p)
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Fiber Sequence—Examples

o Recall MT¢ = B¢,

Proposition

Let p: S(p) — B be the projection. There is a (co)fiber sequence of spectra

S(p)P¢ — B¢ S g—€+p.

Examples
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Deriving the SBLES

Fiber Sequence—Examples

o Recall MT¢ = B¢,

Proposition

Let p: S(p) — B be the projection. There is a (co)fiber sequence of spectra

S(p)P¢ — B¢ S g—€+p.

Examples
e MTSpin — MTPin™ *23 Y MT (Spin x Z/2)
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Deriving the SBLES

Fiber Sequence—Examples

o Recall MT¢ = B¢,

Proposition

Let p: S(p) — B be the projection. There is a (co)fiber sequence of spectra

S(p)P¢ — B¢ S g—€+p.

Examples
o MTSpin — MTPin™ 3 Y MT(Spin x Z/2)
o MTSpin — MTSpin A BU(1) 2% S2MTSpin¢
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Deriving the SBLES

Fiber Sequence—Examples

o Recall MT¢ = B¢,

Proposition

Let p: S(p) — B be the projection. There is a (co)fiber sequence of spectra

S(p)P¢ — B¢ S g—€+p.

Examples
o MTSpin — MTPin™ 3 Y MT(Spin x Z/2)
o MTSpin — MTSpin A BU(1) 2% S2MTSpin¢

S

o MTSpin A X 'RP? — MTPin~ ™% ¥2MTPin™ [KT90]
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Review: SBLES as Induced by a Map of Spectra

. D+1 D+1
MTSpin A BG +——— MTSpin A S(p)P"¢ Q2 Resy Q¢ (S(p)
e . ///
sm, // Iz cohir’nology Def Ind/,/
e v
MTSpin A BG? QD+1-k

Gof
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Deriving the SBLES

Review: SBLES as Induced by a Map of Spectra

o Recall: Anomalies are classified by Q¢! = IP+2(MT¢)

* D+1 D+1
MTSpin A BG +—— MTSpin A S(p)P"¢ Q¢ Res, Q¢ (S(p)
% . -
sm, // Iz cohir’nology Def Ind/,/
o g
MTSpin A BGP QD+1-k
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Deriving the SBLES

Review: SBLES as Induced by a Map of Spectra

o Recall: Anomalies are classified by Q¢! = IP+2(MT¢)

. take cohomology
@ ldea: Fiber sequence of spectra ~ long exact sequence

. D+1 D+1
MTSpin A BG +—— MTSpin A S(p)P"¢ Q2 Resy Q¢ (S(p)
A * /’/
sm, // Iz cohir’nology Def Ind/,/
e g
MTSpin A BG? QD+1-k
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Part Il: Math and Applications

@ How to mathematically derive the SBLES

@ How to apply it
@ Computing Def, to perform anomaly matching
@ Computing anomaly groups
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Application 1: Computing Anomaly Matching

Defect Anomaly Matching Maps—Example

@ Question: How do we compute defect anomaly matching maps? When are they
injective/surjective? ([HKT20b] Thm. 4.2)
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Application 1: Computing Anomaly Matching

Defect Anomaly Matching Maps—Example

@ Question: How do we compute defect anomaly matching maps? When are they
injective/surjective? ([HKT20b] Thm. 4.2)

e Example: Symmetry breaking for fermions with Z/2-symmetry

. 0D D+1
Der. QSpin><Z/2 7 Qpin+
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Application 1: Computing Anomaly Matching

Defect Anomaly Matching Maps—Example

@ Question: How do we compute defect anomaly matching maps? When are they
injective/surjective? ([HKT20b] Thm. 4.2)

e Example: Symmetry breaking for fermions with Z/2-symmetry

. 0D D+1
Der. QSpin><Z/2 7 Qpin+

e Knowing the groups is not enough to deduce the maps: e.g. for (D = 3)

Def,: Z/8®Z — 7/16
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Application 1: Computing Anomaly Matching

Defect Anomaly Matching Maps—Example

Question: How do we compute defect anomaly matching maps? When are they
injective/surjective? ([HKT20b] Thm. 4.2)

Example: Symmetry breaking for fermions with Z/2-symmetry

. 0D D+1
Der. QSpin><Z/2 7 Qpin+

Knowing the groups is not enough to deduce the maps: e.g. for (D = 3)

Def,: Z/8®Z — 7/16

e Turns out, this is (a, b) — b — 2a, where b tracks the gravitational anomaly of the
defect theory and a tracks the internal Z/2 anomaly [HKT20b]
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Spin X Z/2 ~» Pin" Defect Matching Maps

*—1 *
QSpinXZ/Z gzPinJr
0 0

7 —1 5 7/2

0 0

2

(Z/2)? —1— 7,/2

(Z)2)? —— 7)2

Z&7L/8 — 7./16
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Application 1: Computing Anomaly Matching

Spin x Z/2 ~» Pin" SBLES

Qmnze e Wpin
-1 0 0 Z
1 0 0 7./2
S T >
2 (722 — 7.)2 7.)2
3 (Z)2)? — 7.)2 z

~

Z®7L/8 — 7)16 0
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Application 2: Computing Anomaly Groups

Part Il: Math and Applications

@ How to mathematically derive the SBLES

@ How to apply it
@ Computing Def, to perform anomaly matching
® Computing anomaly groups
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LES for Anomaly Group Computations
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Application 2: Computing Anomaly Groups

LES for Anomaly Group Computations

@ Long exact sequences can aid in anomaly group computations (solving extension
problems)
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Application 2: Computing Anomaly Groups

LES for Anomaly Group Computations

@ Long exact sequences can aid in anomaly group computations (solving extension
problems)

@ Recall: Smith maps sm, are dual to defect maps Def,
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@ Recall: Smith maps sm, are dual to defect maps Def,

@ Bordism groups are dual to anomaly groups
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LES for Anomaly Group Computations

@ Long exact sequences can aid in anomaly group computations (solving extension
problems)

Recall: Smith maps sm,, are dual to defect maps Def,

Bordism groups are dual to anomaly groups

Example: o-twisted bordism of RP?
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LES for Anomaly Group Computations

Long exact sequences can aid in anomaly group computations (solving extension
problems)

Recall: Smith maps sm,, are dual to defect maps Def,
Bordism groups are dual to anomaly groups
Example: o-twisted bordism of RP?

Other examples: [Deb+23] studying the Swampland Cobordism Conjecture
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e Consider p = 20 and fermionic theories with internal time reversal [KT90]:
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sy, QLM — QUi
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Pin® Long Exact Sequence in Bordism

e Consider p = 20 and fermionic theories with internal time reversal [KT90]:
sy, QM — Qgif; .

@ The fiber sequence inducing this is

MTSpin A L 'RP? — MTPin™ % ¥2MTPin~
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Application 2: Computing Anomaly Groups

Pin® Long Exact Sequence in Bordism

e Consider p = 20 and fermionic theories with internal time reversal [KT90]:
SMoy Qgin_ — Qgif; .
@ The fiber sequence inducing this is
MTSpin A L 'RP? — MTPin™ % ¥2MTPin~

@ To fill in the LES, we need to compute

m.(MTSpin A T71RP?) = QSPINRP?) = QFPIN(RPY, &)
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Application 2: Computing Anomaly Groups

Pin® Long Exact Sequence in Bordism—[KT90] Computation
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Application 2: Computing Anomaly Groups

Pin® Long Exact Sequence in Bordism—[KT90] Computation

o Kirby-Taylor observed [KT90] that the degree-two map
S 258 — TP IRP?
induces -2 on spin bordism (dual to anomaly groups):

QsPin 2, QSin __, OSPIR(RP! o).
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LES Partially Determining Q"™ (RP!, o)

. QP QP QP (RPY, o)
5 0 0

4 Z Z

3 0 0

2 Z/2 Z/2

1 Z/2 Z/2
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LES Partially Determining Q"™ (RP!, o)

x Qfpin Qi QP(RPL, o)
5 0 0 0

4 Z y Z 7.)2

3 0 0 7./2

2 7./2 y 7./2 y A

1 7/2 y 7,2 7.)2

0 Z y 7 7.2



Math and Applications
0000008000

Application 2: Computing Anomaly Groups

Resolving the Extension Question with the Smith LES

. QPN(RPL, o) QPin~ QPinf
6 7./16 7./16
5 0 7.]2
4 0 7.)2
3 0 0

2 7/8 72
1 7]2 0

0 7./2 0
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Resolving the Extension Question with the Smith LES

« QP (RPL o) QPin~ QPin’

6 0 7.)16 —— 7./16

5 0 0 Z)2

s Szp o zm
2 7.4 y 7./8 s 7.)2

1 7)2 ——— 7.2 0
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[Optional:] Twisted Tangential Structures and Shearing

Definition
Let V — X be a virtual bundle. An (X, V)-twisted spin structure on a vector bundle
E— Mis

@eamapf: M— X

@ a spin structure on E @ f*V

o Manifolds with (X, V)-twisted spin structures live in 7,(MTSpin A XV~").

Examples
e PinT-structures <+ (BZ/2, o)-twisted spin structures
o check wo(E) =0 <= E & 3Det(E) is spin
e MTPin" ~ MTSpin A (BZ/2)3" 3
@ Spin®-structures <> (BU(1),y)-twisted spin structures
o MTSpin® ~ MTSpin A BU(1)7~1
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Thanks for coming!
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Bonus: Periodic Families

Examples of Periodic Families

Smith homomorphisms often occur in periodic families:
e 1-periodic family ([CF64]):

OXxZ/2 sm OxZ/2 sm OXZ/2
QOXE/2 g OXE/2 e OXT2
@ 2-periodic family ([KT90; Sto88]):
QP 2 QSR Qs S st
@ 4-periodic family ([HKT20b; BC18; Sto88; KT90; Pet68]):

SpinxZ/2 sm Pin— sm Spinxz/,Z/4 sm Pin™ s ~Spinx7Z/2
oy smg QPin- smg o8P smg QPint st SPInxZ/2
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Bonus: Periodic Families

Untwisting

Idea: Let p be the k-dim’l twisting datum.
@ periodic Smith families (with period n) occur when np is appropriately oriented.
@ in that case, the spectrum untwists:

MTH A X" ~ MTH A Tk X

The Spin Case

There is an isomorphism of MT Spin-modules
MTSpin A X" ~ MTSpin A £"%X

if and only if np has a spin structure.

@ The order of the image of p € [X, BO] under the homomorphism
[X, BO] — [X, BO/BSpin] determines periodicity
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Bonus: Periodic Families

Untwisting

Idea: When np is appropriately oriented, the spectrum untwists:

MTH A X™ ~ MTH A Xk X

Examples

e n=1: X = BZ/2; no orientation condition for &
o MTO A (BZ/2)7 ~ MTO N¥(BZ/2)+

e n=2: X = BU(1); 27 is spin
e check: for any complex vector bundle E, E is oriented, and 2E is spin
e MTSpin A BU(1)*Y ~ MTSpin A £*BU(1)

e n=4: X =BZ/2; 40 is spin
e check: for any real bundle E, 2E is oriented, and 4E is spin
o MTSpin A (BZ/2)%° ~ MTSpin A £*BZ/2.
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