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Background on Anomalies

’t Hooft Anomalies

Consider a D-dim’l theory Z with symmetry G . What does its ’t Hooft anomaly β
represent?

β is the obstruction to gauging the G symmetry.

β is the obstruction to gauge-invariantly coupling Z to G -gauge fields.

β is the obstruction for Z to be symmetrically nondegenerately gapped; that is, to
symmetrically deforming Z to have a nondegenerate gapped ground state.

Bulk-boundary: β is a D + 1-dim’l SPT and Z is a boundary theory of β.

Mathematical classification: the anomaly β ∈ ΩD+1
G lives in a cohomology class

(more on this in the math section) [Kap14; Kap+15; FH21].
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Background on Anomalies

Families of Anomalies

Anomalies can also appear in families [TE18; Kom+19; Tho17; Cór+20; KS20;
HKT20a; Wen+21].

Suppose Z [ϕ] depends on a parameter ϕ ∈ M. Then we can couple Z to a
background field ϕ(x). The anomaly β is the obstruction for the partition
function Z [ϕ(x)] to be consistently defined for all ϕ. If it is anomalous, the
partition function is a section of a non-trivial line bundle.

The family anomaly β is an obstruction to deforming Z [ϕ] such that Z [ϕ] is
nondegeneratedly gapped for all values of ϕ ∈ M.

Note that G can act on M, in which case we want to equivariantly deform Z .

Mathematical classification: β ∈ ΩD+1
G (M).
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HKT20a; Wen+21].

Suppose Z [ϕ] depends on a parameter ϕ ∈ M. Then we can couple Z to a
background field ϕ(x). The anomaly β is the obstruction for the partition
function Z [ϕ(x)] to be consistently defined for all ϕ. If it is anomalous, the
partition function is a section of a non-trivial line bundle.

The family anomaly β is an obstruction to deforming Z [ϕ] such that Z [ϕ] is
nondegeneratedly gapped for all values of ϕ ∈ M.

Note that G can act on M, in which case we want to equivariantly deform Z .

Mathematical classification: β ∈ ΩD+1
G (M).



Physics of SBLESs Math and Applications References

Symmetry Breaking Long Exact Sequence

Motivation: ρ-gappability

Consider a D-dim’l theory Z with G symmetry and anomaly β ̸= 0 ∈ ΩD+1
G . In the

absence of gravitational anomalies we expect that we can gap Z by breaking G .

Question: Let ρ be a k-dim’l representation of G . Can we gap the theory using a
symmetry breaking parameter ϕ transforming in the representation ρ?

Definition

A theory is ρ-gappable if there are order parameters (O1,O2, ...,Ok), transforming in ρ
under G , such that H(c1,...,cn) = H0 +

∑
j cj

∫
dDxOj(x) has a gapped, nondegenerate

ground state for large enough radius R =
∑

j |cj |2.

e.g.: Consider a 3 + 1D Dirac fermion ψ with anomalous G = U(1)L symmetry. It
is ρ-gappable for ρ = 1, given by the Dirac mass terms (O1 = ψ̄ψ,O2 = iψ̄γ5ψ).
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Symmetry Breaking Long Exact Sequence

ρ-gappability and Residual Anomalies

If ρ is the trivial representation, then Z is ρ-gappable if it is symmetrically
gappable, equivalently, if the anomaly β = 0.

Question: Do we have an anomaly interpretation of ρ-gappability?

View Z as a theory trivially coupled to ϕ ∈ M = S(ρ), to ρ-gap the theory means
to (equivariantly) gap this family of theories over the sphere S(ρ).

On anomalies, there is a residual anomaly map:

Resρ : Ω
D+1
G → ΩD+1

G (S(ρ)).

Resρ(β) is the obstruction to gapping Z over S(ρ):

Z is ρ-gappable if and only if Resρ(β) = 0.
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Symmetry Breaking Long Exact Sequence

Example: 2 + 1D Majorana Fermion

Let’s do an example where the theory is not ρ-gappable.

Consider a 2 + 1D Majorana fermion ψ with time reversal symmetry T .

Take ρ0 be the sign representation. Then the theory is ρ0-gappable via the T -odd
mass term O = ψ̄ψ.

Take ρ = ρ0 ⊕ ρ0. Is the theory ρ-gappable? That is, can we find two T -odd
operators O1, O2 such that

H0 + r sin(θ)O1 + r cos(θ)O2

is gapped for any θ and large enough r?

We claim that the answer is no! There are no operators O1,O2 that can make
this happen!
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Symmetry Breaking Long Exact Sequence

Example: 2 + 1D Majorana Fermion II

Trivial example: O1 = O2 = ψ̄ψ.

Clearly this is not gapped at θ = ±3π/4 where m = 0. Going from m < 0 to
m > 0 pumps a p + ip superconductor. Going from m > 0 to m < 0 pumps a
p − ip.

Claim: The number of p ± ip pumped mod 2 across half an arc is an invariant.
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Symmetry Breaking Long Exact Sequence

Anomaly Analysis

Let’s check this on anomalies. The Majorana fermion’s anomaly is
1 ∈ Ω4

Pin+
= Z16 [Wit16]. Ω4

Pin+
(S1) = Z2 counts the number of p ± ip mod 2

across the arc.

Our example above fixes the residual anomaly map

Resρ : Ω
4
Pin+

Ω4
Pin+

(S1)

Z16 Z2

β = 1 1 ̸= 0

Consequence I: For any choices of T -odd O1,O2, the number of p ± ip’s pumped
across half an arc is odd.

Consequence II: The 2 + 1D Majorana fermion is not ρ-gappable.
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Symmetry Breaking Long Exact Sequence

Recap I

ΩD+1
G ΩD+1

G (S(ρ))
Resρ
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Symmetry Breaking Long Exact Sequence

Topological Defects

Question: Assume that Z is ρ-gappable (Resρ(β) = 0). What can the anomaly β
tell us?

This question was answered in [HKT20b] (in the case that G = Z2):

Given a ρ-gapping, where the the order parameter is ϕ ∈ Vρ, we can create a
defect system by letting ϕ vary in space with the form:

ϕ = (v1x1 + ...+ vkxk)/

√∑
i

x2i

for large R =
√∑

i x
2
i , where the vi form an orthonormal basis of Vρ.

The defect is localized at x1 = · · · = xk = 0. Since the system is ρ-gapped,
excitations are localized at the defect, which we view as a (D − k)-dim’l system.

Examples: domain walls (k = 1), vortices (k = 2), and hedgehogs (k = 3).
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Question: Assume that Z is ρ-gappable (Resρ(β) = 0). What can the anomaly β
tell us?

This question was answered in [HKT20b] (in the case that G = Z2):

Given a ρ-gapping, where the the order parameter is ϕ ∈ Vρ, we can create a
defect system by letting ϕ vary in space with the form:
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Defect Anomaly Matching

Since ϕ = 0 ∈ Vρ is a fixed point under G , the defect theory ZD has Gρ symmetry
1 and anomaly α ∈ ΩD+1−k

Gρ
.

There is a defect anomaly map

Defρ : Ω
D+1−k
Gρ

→ ΩD+1
G .

The anomaly matching condition [HKT20b]:

Defρ(α) = β.

1There is a twisting of the G action by ρ, we may revisit this in the math section
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Example: 3 + 1D Dirac Fermions

Consider a 3 + 1D Dirac fermion ψ with G = U(1)L. Its anomaly polynomial is

β =
1

6
(c1)

3 − 1

24
c1p1(TX ),

where p1 is the first Pontryagin number and X is the 6D test manifold with a
principal U(1)L bundle P. 2

Let ρ = 1. The Dirac mass gives a ρ-gapping and the defect is the axion string
[CH85]. A 1 + 1D chiral fermion is localized on the axion string with fractional
charge 1

2 .

The defect anomaly polynomial is

α =
1

8
(c1)

2 − 1

24
p1(TY ), (1)

where Y is the zero section of a generic section s : X → Eρ = P ×U(1)L Vρ.

2Anomaly polynomials are D + 2 dimensional characteristic classes whose Chern-Simons form is the
anomaly.
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Example: 3 + 1D Dirac Fermions II

To compute Defρ(α), we have

Defρ(α) = c1α

=
1

8
(c1)

3 − 1

24
c1p1(TY ).

To relate TY and TX , we use the following formula:

TX |Y = TY ⊕ Eρ|Y , p1(TX ) = p1(TY ) + (c1)
2.

Plugging in, we get

Defρ(α) =
1

6
(c1)

3 − 1

24
c1p1(TX ) = β.
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Recap II

ΩD+1
G ΩD+1

G (S(ρ))

ΩD+1−k
Gρ

Resρ

Defρ

This is exact at ΩD+1
G ; i.e., Resρ(β) = 0 if and only if there is an α ∈ ΩD+1−k

Gρ

such that β = Defρ(α).

β is the anomaly of the defect system created via the ρ-gapping.
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Ambiguity in Defect Anomaly Matching

The defect anomaly determines the bulk. However, this map is not injective:
there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory
Z with β = 0 can have anomalous defects!

Question: What is the ambiguity in the defect anomaly map?

The defect comes from a ρ-gapping, which assigns a nondegenerate ground state
to each point on the sphere S(ρ). This invertible family is not typically free of
G -anomalies, but it is when β = 0. Therefore the ρ-gapping defines a D-dim’l
SPT class

γ ∈ ΩD
G (S(ρ)).



Physics of SBLESs Math and Applications References

Symmetry Breaking Long Exact Sequence

Ambiguity in Defect Anomaly Matching

The defect anomaly determines the bulk. However, this map is not injective:
there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory
Z with β = 0 can have anomalous defects!

Question: What is the ambiguity in the defect anomaly map?

The defect comes from a ρ-gapping, which assigns a nondegenerate ground state
to each point on the sphere S(ρ). This invertible family is not typically free of
G -anomalies, but it is when β = 0. Therefore the ρ-gapping defines a D-dim’l
SPT class

γ ∈ ΩD
G (S(ρ)).



Physics of SBLESs Math and Applications References

Symmetry Breaking Long Exact Sequence

Ambiguity in Defect Anomaly Matching

The defect anomaly determines the bulk. However, this map is not injective:
there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory
Z with β = 0 can have anomalous defects!

Question: What is the ambiguity in the defect anomaly map?

The defect comes from a ρ-gapping, which assigns a nondegenerate ground state
to each point on the sphere S(ρ). This invertible family is not typically free of
G -anomalies, but it is when β = 0. Therefore the ρ-gapping defines a D-dim’l
SPT class

γ ∈ ΩD
G (S(ρ)).



Physics of SBLESs Math and Applications References

Symmetry Breaking Long Exact Sequence

D − 1-dim’l Boundary Theory

We can also construct a dynamical theory with anomaly γ:

Recall our ρ-gapping Hamiltonian:

H(c1,...,cn) = H0 +
∑
j

cj

∫
dDxOj(x)

Since Z is anomaly-free, let’s assume H0 has a symmetric non-degenerate ground
state. Hc1,··· ,ck is also gapped for large R =

∑
j |cj |2.

If γ describes a nontrivial SPT, then there is some point (c1, ..., cn) with radius
r ≤ R such that H(c1,...,cn) fails to be nondegenerately gapped.



Physics of SBLESs Math and Applications References

Symmetry Breaking Long Exact Sequence

D − 1-dim’l Boundary Theory

We can also construct a dynamical theory with anomaly γ:
Recall our ρ-gapping Hamiltonian:

H(c1,...,cn) = H0 +
∑
j

cj

∫
dDxOj(x)

Since Z is anomaly-free, let’s assume H0 has a symmetric non-degenerate ground
state. Hc1,··· ,ck is also gapped for large R =

∑
j |cj |2.

If γ describes a nontrivial SPT, then there is some point (c1, ..., cn) with radius
r ≤ R such that H(c1,...,cn) fails to be nondegenerately gapped.



Physics of SBLESs Math and Applications References

Symmetry Breaking Long Exact Sequence

D − 1-dim’l Boundary Theory

We can also construct a dynamical theory with anomaly γ:
Recall our ρ-gapping Hamiltonian:

H(c1,...,cn) = H0 +
∑
j

cj

∫
dDxOj(x)

Since Z is anomaly-free, let’s assume H0 has a symmetric non-degenerate ground
state. Hc1,··· ,ck is also gapped for large R =

∑
j |cj |2.

If γ describes a nontrivial SPT, then there is some point (c1, ..., cn) with radius
r ≤ R such that H(c1,...,cn) fails to be nondegenerately gapped.



Physics of SBLESs Math and Applications References

Symmetry Breaking Long Exact Sequence

D − 1-dim’l Boundary Theory

We can also construct a dynamical theory with anomaly γ:
Recall our ρ-gapping Hamiltonian:

H(c1,...,cn) = H0 +
∑
j

cj

∫
dDxOj(x)

Since Z is anomaly-free, let’s assume H0 has a symmetric non-degenerate ground
state. Hc1,··· ,ck is also gapped for large R =

∑
j |cj |2.

If γ describes a nontrivial SPT, then there is some point (c1, ..., cn) with radius
r ≤ R such that H(c1,...,cn) fails to be nondegenerately gapped.



Physics of SBLESs Math and Applications References

Symmetry Breaking Long Exact Sequence

Index Anomaly Matching

The theory Hc1,...,cn for
∑

j |cj |2 = r is a D − 1 dim’l theory with parameter space

S(ρ), whose family anomaly is γ ∈ ΩD(S(ρ)).

The defect is created by shrinking the D − 1 theory on S(ρ) to a point.

On anomalies, this is the generalization of Callias index theorem [Cal78; BS78],
which counts the fermion zero modes at the core of a mass defect.

There is an index map

Indρ : Ω
D
G (S(ρ)) → ΩD+1−k

Gρ
.

Index anomaly matching:

Indρ(γ) = β.
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Symmetry Breaking Long Exact Sequence

Example: Thouless Pump

Consider a 1 + 1D Dirac fermion ψ with anomaly-free U(1)V . There is a
symmetry preserving (ρ = R2) Dirac mass term

cos(ϕ)ψ̄ψ + i sin(ϕ)ψ̄γcψ,

γc = iγ0γ1.

This defines a non-trivial SPT γ = Adϕ.

Adding a mass term ψ̄ψ so H0 is gapped, we have

(x + 1)ψ̄ψ + iy ψ̄γcψ ⊂ H(x ,y).

This family fails to be gapped at (x = −1, y = 0), where the fermion becomes
massless.

Viewing the S1 parameter theory at r = 1 as the boundary of γ, we see that when
we adiabatically vary the S1 parameter ϕ, we pump a quantized charge to the
boundary [Tho83].
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Example: Thouless Pump II

The ρ-defect is the operator that creates a vortex in ϕ. It carries an unit charge
under U(1), matching the Thouless pump.

On anomalies:

Indρ : Ω
2
Spinc (S

1) Ω1
Spinc

Z Z.

≃

=

The first group counts the charges pumped when we vary S1 parameter ϕ; the
latter computes the U(1) charge of the ϕ-vortex.
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Recap III

We have a sequence of maps:

ΩD
G (S(ρ))

Indρ−−−→ ΩD+1−k
Gρ

Defρ−−−→ ΩD+1
G

Resρ−−−→ ΩD+1
G (S(ρ))

This is exact at ΩD+1−k
Gρ

: Defρ(α) = 0 if and only if α = Indρ(γ) for some

γ ∈ ΩD
G (S(ρ)).

Rolling over:

ΩD
G

Resρ−−−→ ΩD
G (S(ρ))

Indρ−−−→ ΩD+1−k
Gρ

.

This is exact at ΩD
G (S(ρ)).
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Completing the Circle

We can infinitely continue this long exact sequence:

· · ·ΩD
G

Resρ−−−→ ΩD
G (S(ρ))

Indρ−−−→ ΩD+1−k
Gρ

Defρ−−−→ ΩD+1
G

Resρ−−−→ ΩD+1
G (S(ρ))

Indρ−−−→ ΩD+1−k
Gρ

· · ·

ΩD+1
G ΩD+1

G (S(ρ))

ΩD+1−k
Gρ

Resρ

IndρDefρ
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1 How to mathematically derive the SBLES

2 How to apply it
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Deriving the SBLES

SBLES as Induced by a Map of Spectra

Specialize to fermions.

Idea: Fiber sequence of spectra
take cohomology

⇝ long exact sequence

MTSpin ∧ BG MTSpin ∧ S(ρ)p
∗ξ

MTSpin ∧ BGρ

I∗Z cohomology
⇝

ΩD+1
G ,f ΩD+1

G ,f (S(ρ))

ΩD+1−k
Gρ,f

Resρ

IndDef



Physics of SBLESs Math and Applications References

Deriving the SBLES

SBLES as Induced by a Map of Spectra

Specialize to fermions.

Idea: Fiber sequence of spectra
take cohomology

⇝ long exact sequence

MTSpin ∧ BG MTSpin ∧ S(ρ)p
∗ξ

MTSpin ∧ BGρ

I∗Z cohomology
⇝

ΩD+1
G ,f ΩD+1

G ,f (S(ρ))

ΩD+1−k
Gρ,f

Resρ

IndDef



Physics of SBLESs Math and Applications References

Deriving the SBLES

SBLES as Induced by a Map of Spectra

Specialize to fermions.

Idea: Fiber sequence of spectra
take cohomology

⇝ long exact sequence

MTSpin ∧ BG MTSpin ∧ S(ρ)p
∗ξ

MTSpin ∧ BGρ

I∗Z cohomology
⇝

ΩD+1
G ,f ΩD+1

G ,f (S(ρ))

ΩD+1−k
Gρ,f

Resρ

IndDef



Physics of SBLESs Math and Applications References

Deriving the SBLES

Example SBLES and Map of Spectra

Running example:

ΩD+1
Pin+

=ΩD+1
Z/2,f fermions with internal time-reversal symmetry with T 2 = (−1)F

Symmetry-breaking order parameter: ρ = σ, the sign representation of Z/2
ΩD
Spin×Z/2 =ΩD

Z/2ρ,f : fermions with internal Z/2 unitary symmetry U2 = 1.

MTPin+ MTSpin ∧ S(σ)p
∗ξ

MTSpin ∧ BZ/2
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⇝
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Z/2,f (S(σ))
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Resρ

IndDef



Physics of SBLESs Math and Applications References

Deriving the SBLES

Example SBLES and Map of Spectra

Running example:

ΩD+1
Pin+

=ΩD+1
Z/2,f fermions with internal time-reversal symmetry with T 2 = (−1)F

Symmetry-breaking order parameter: ρ = σ, the sign representation of Z/2
ΩD
Spin×Z/2 =ΩD

Z/2ρ,f : fermions with internal Z/2 unitary symmetry U2 = 1.

MTPin+ MTSpin ∧ S(σ)p
∗ξ

MTSpin ∧ BZ/2

I∗Z cohomology
⇝

ΩD+1
Z/2,f ΩD+1

Z/2,f (S(σ))

ΩD+1−k
Z/2ρ,f

Resρ

IndDef



Physics of SBLESs Math and Applications References

Deriving the SBLES

Example SBLES and Map of Spectra

Running example:

ΩD+1
Pin+

=ΩD+1
Z/2,f fermions with internal time-reversal symmetry with T 2 = (−1)F

Symmetry-breaking order parameter: ρ = σ, the sign representation of Z/2

ΩD
Spin×Z/2 =ΩD

Z/2ρ,f : fermions with internal Z/2 unitary symmetry U2 = 1.

MTPin+ MTSpin ∧ S(σ)p
∗ξ

MTSpin ∧ BZ/2

I∗Z cohomology
⇝

ΩD+1
Z/2,f ΩD+1

Z/2,f (S(σ))

ΩD+1−k
Z/2ρ,f

Resρ

IndDef



Physics of SBLESs Math and Applications References

Deriving the SBLES

Example SBLES and Map of Spectra

Running example:

ΩD+1
Pin+

=ΩD+1
Z/2,f fermions with internal time-reversal symmetry with T 2 = (−1)F

Symmetry-breaking order parameter: ρ = σ, the sign representation of Z/2
ΩD
Spin×Z/2 =ΩD

Z/2ρ,f : fermions with internal Z/2 unitary symmetry U2 = 1.

MTPin+ MTSpin ∧ S(σ)p
∗ξ

MTSpin ∧ BZ/2

I∗Z cohomology
⇝

ΩD+1
Z/2,f ΩD+1

Z/2,f (S(σ))

ΩD+1−k
Z/2ρ,f

Resρ

IndDef



Physics of SBLESs Math and Applications References

Deriving the SBLES

Tangential Structures

A stable tangential structure is a map ξ : B → BO.
A manifold X has ξ-structure if the classifying map f of
TX has a lift to the space B.

B

X BO

ξf̃

f

Examples:

B = BSO: bosonic theories

B = BSpin ∧ BG : fermionic theories with G -symmetry

B = BSpin× BZ/2: fermionic with internal unitary symmetry U2 = 1
B = BPin+: fermionic with internal time reversal symmetry T 2 = (−1)F

B = BSpin× BU(1): fermionic with internal U(1) symmetry

B = BSpinc : complex fermionic with fractional charge
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Deriving the SBLES

Madsen-Tillman Spectra and Anomalies

Fix a stable tangential structure ξ : B → BO (e.g. ξ : BPin+ → BO for fermions
with T 2 = (−1)F )

“Definition”: The Madsen-Tillman spectrum MT ξ is the Thom spectrum of the
inverse of ξ, written B−ξ. (e.g. MTPin+)

Idea: The Madsen-Tillman spectrum MT ξ is such that

Ansatz ([FH21])
anomaly groups
of D-dim’l theories
with symmetry (B, ξ)

 ∼= ID+2
Z (MT ξ)

Theorem (Pontrjagin-Thom)

πd(MT ξ) ∼= Ωξ
d = {manifolds with (B, ξ)-structure}/ ∼.

e.g. MTPin+ is such that...

I 4Z(MTPin+) ∼= Z/16
(2 + 1D Majorana)

π2(MTPin+) ∼= ΩPin+

2
∼= Z/2

(Klein bottle)
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Deriving the SBLES

Madsen-Tillman Spectra and Anomalies—Takeaway

Fix a stable tangential structure ξ : B → BO (e.g. ξ : BPin+ → BO for fermions
with T 2 = (−1)F )

“Definition”: The Madsen-Tillman spectrum MT ξ is the Thom spectrum of the
inverse of ξ, written B−ξ. (e.g. MTPin+)

Idea: The Madsen-Tillman spectrum MT ξ is such that

Ansatz ([FH21])
anomaly groups
for D-dim’l theories
with symmetry (B, ξ)

 ∼= ID+2
Z (MT ξ)= ΩD+1

ξ

Theorem (Pontrjagin-Thom)

πd(MT ξ) ∼= Ωξ
d = {manifolds with (B, ξ)-structure}/ ∼.
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(2 + 1D Majorana)
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2
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Deriving the SBLES

Fiber Sequence

Recall MT ξ = B−ξ.

Proposition

Let p : S(ρ) → B be the projection. There is a (co)fiber sequence of spectra

S(ρ)p
∗ξ −→ B−ξ smρ−→ B−ξ+ρ.

Idea: The Smith map smρ is a map of spectra that
comes from taking the zero section of ρ.

Note: smρ induces Defρ

A cofiber sequence of spaces is like a quotient:

S(ρ)+ → D(ρ)+ → Sρ = D(ρ)/S(ρ)
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Deriving the SBLES

Fiber Sequence—Examples

Recall MT ξ = B−ξ.

Proposition

Let p : S(ρ) → B be the projection. There is a (co)fiber sequence of spectra

S(ρ)p
∗ξ −→ B−ξ smρ−→ B−ξ+ρ.

Examples

MTSpin → MTPin+
smσ−→ ΣMT (Spin× Z/2)

MTSpin → MTSpin ∧ BU(1)
smγ−→ Σ2MTSpinc

MTSpin ∧ Σ∞−1
+ RP2 → MTPin−

sm2σ−→ Σ2MTPin+ [KT90]
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Deriving the SBLES

Review: SBLES as Induced by a Map of Spectra

Recall: Anomalies are classified by ΩD+1
ξ = ID+2

Z (MT ξ)

Idea: Fiber sequence of spectra
take cohomology

⇝ long exact sequence

MTSpin ∧ BG MTSpin ∧ S(ρ)p
∗ξ

MTSpin ∧ BGρ

smρ
I∗Z cohomology

⇝

ΩD+1
G ΩD+1

G ,f (S(ρ))

ΩD+1−k
Gρ,f
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IndDef
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Application 1: Computing Anomaly Matching

Part II: Math and Applications

1 How to mathematically derive the SBLES

2 How to apply it
1 Computing Defρ to perform anomaly matching
2 Computing anomaly groups
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Application 1: Computing Anomaly Matching

Defect Anomaly Matching Maps—Example

Question: How do we compute defect anomaly matching maps? When are they
injective/surjective? ([HKT20b] Thm. 4.2)

Example: Symmetry breaking for fermions with Z/2-symmetry

Defσ : Ω
D
Spin×Z/2 −→ ΩD+1

Pin+

Knowing the groups is not enough to deduce the maps: e.g. for (D = 3)

Defσ : Z/8⊕ Z −→ Z/16

Turns out, this is (a, b) 7→ b− 2a, where b tracks the gravitational anomaly of the
defect theory and a tracks the internal Z/2 anomaly [HKT20b]
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Application 1: Computing Anomaly Matching

Spin× Z/2⇝ Pin+ Defect Matching Maps

Ω∗−1
Spin×Z/2 Ω∗

Pin+

−1 0 0

0 Z Z/2

1 0 0

2 (Z/2)2 Z/2

3 (Z/2)2 Z/2

4 Z⊕ Z/8 Z/16

?

?

?

?
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Application 1: Computing Anomaly Matching

Spin× Z/2⇝ Pin+ SBLES

Ω∗−1
Spin×Z/2 Ω∗

Pin+ Ω∗
Spin

−1 0 0 Z

0 Z Z/2 0

1 0 0 Z/2

2 (Z/2)2 Z/2 Z/2

3 (Z/2)2 Z/2 Z

4 Z⊕ Z/8 Z/16 0
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Application 2: Computing Anomaly Groups

Part II: Math and Applications

1 How to mathematically derive the SBLES

2 How to apply it
1 Computing Defρ to perform anomaly matching
2 Computing anomaly groups
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Application 2: Computing Anomaly Groups

LES for Anomaly Group Computations

Long exact sequences can aid in anomaly group computations (solving extension
problems)

Recall: Smith maps smρ are dual to defect maps Defρ

Bordism groups are dual to anomaly groups

Example: σ-twisted bordism of RP2

Other examples: [Deb+23] studying the Swampland Cobordism Conjecture
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Application 2: Computing Anomaly Groups

Pin± Long Exact Sequence in Bordism

Consider ρ = 2σ and fermionic theories with internal time reversal [KT90]:

sm2σ : Ω
Pin−

d −→ ΩPin+

d−2 .

The fiber sequence inducing this is

MTSpin ∧ Σ−1RP2 −→ MTPin+
sm2σ−→ Σ2MTPin−

To fill in the LES, we need to compute

π∗(MTSpin ∧ Σ−1RP2) ∼= Ω̃Spin
∗+1 (RP

2) ∼= ΩSpin
∗ (RP1, σ)
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Application 2: Computing Anomaly Groups

Pin± Long Exact Sequence in Bordism—[KT90] Computation

Kirby-Taylor observed [KT90] that the degree-two map

S ·2−→ S −→ Σ∞−1
+ RP2

induces ·2 on spin bordism (dual to anomaly groups):

ΩSpin
∗

·2−→ ΩSpin
∗ −→ ΩSpin

∗ (RP1, σ).
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Application 2: Computing Anomaly Groups

Pin± Long Exact Sequence in Bordism—[KT90] Computation

Kirby-Taylor observed [KT90] that the degree-two map
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Application 2: Computing Anomaly Groups

LES Partially Determining ΩSpin
∗ (RP1, σ)

∗ ΩSpin
∗ ΩSpin

∗ ΩSpin
∗ (RP1, σ)

5 0 0

4 Z Z

3 0 0

2 Z/2 Z/2

1 Z/2 Z/2

0 Z Z
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Application 2: Computing Anomaly Groups

LES Partially Determining ΩSpin
∗ (RP1, σ)

∗ ΩSpin
∗ ΩSpin

∗ ΩSpin
∗ (RP1, σ)

5 0 0 0

4 Z Z Z/2

3 0 0 Z/2

2 Z/2 Z/2 A

1 Z/2 Z/2 Z/2

0 Z Z Z/2
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Application 2: Computing Anomaly Groups

Resolving the Extension Question with the Smith LES

∗ ΩSpin
∗ (RP1, σ) ΩPin−

∗ ΩPin+
∗−2

6 Z/16 Z/16

5 0 Z/2

4 0 Z/2

3 0 0

2 Z/8 Z/2

1 Z/2 0

0 Z/2 0
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Application 2: Computing Anomaly Groups

Resolving the Extension Question with the Smith LES

∗ ΩSpin
∗ (RP1, σ) ΩPin−

∗ ΩPin+
∗−2

6 0 Z/16 Z/16

5 0 0 Z/2

4 Z/2 0 Z/2

3 Z/2 0 0

2 Z/4 Z/8 Z/2

1 Z/2 Z/2 0

0 Z/2 Z/2 0
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Application 2: Computing Anomaly Groups

[Optional:] Twisted Tangential Structures and Shearing

Definition

Let V → X be a virtual bundle. An (X ,V )-twisted spin structure on a vector bundle
E → M is

a map f : M → X

a spin structure on E ⊕ f ∗V

Manifolds with (X ,V )-twisted spin structures live in π∗(MTSpin ∧ XV−r ).

Examples

Pin+-structures ↔ (BZ/2, σ)-twisted spin structures

check w2(E ) = 0 ⇐⇒ E ⊕ 3Det(E ) is spin
MTPin+ ≃ MTSpin ∧ (BZ/2)3σ−3

Spinc -structures ↔ (BU(1), γ)-twisted spin structures

MTSpinc ≃ MTSpin ∧ BU(1)γ−1
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Application 2: Computing Anomaly Groups

Thanks for coming!
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Bonus: Periodic Families

Examples of Periodic Families

Smith homomorphisms often occur in periodic families:

1-periodic family ([CF64]):

Ω
O×Z/2
d

smσ−→ Ω
O×Z/2
d−1

smσ−→ Ω
O×Z/2
d−2 −→ ...

2-periodic family ([KT90; Sto88]):

ΩSpin
d

smγ−→ ΩSpinc

d−2

smγ−→ ΩSpin
d−4

smγ−→ ΩSpinc

d−6 −→ ...

4-periodic family ([HKT20b; BC18; Sto88; KT90; Pet68]):

Ω
Spin×Z/2
d

smσ−→ ΩPin−

d−1
smσ−→ Ω

Spin×Z/2Z/4
d−2

smσ−→ ΩPin+

d−3
smσ−→ Ω

Spin×Z/2
d−4 −→ ...
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Bonus: Periodic Families

Untwisting

Idea: Let ρ be the k-dim’l twisting datum.

periodic Smith families (with period n) occur when nρ is appropriately oriented.

in that case, the spectrum untwists:

MTH ∧ X nρ ≃ MTH ∧ ΣknX

The Spin Case

There is an isomorphism of MTSpin-modules

MTSpin ∧ X nρ ≃ MTSpin ∧ ΣnkX

if and only if nρ has a spin structure.

The order of the image of ρ ∈ [X ,BO] under the homomorphism
[X ,BO] → [X ,BO/BSpin] determines periodicity
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Bonus: Periodic Families

Untwisting

Idea: When nρ is appropriately oriented, the spectrum untwists:

MTH ∧ X nρ ≃ MTH ∧ ΣknX

Examples

n = 1: X = BZ/2; no orientation condition for σ

MTO ∧ (BZ/2)σ+ ≃ MTO ∧ Σ(BZ/2)+
n = 2: X = BU(1); 2γ is spin

check: for any complex vector bundle E , E is oriented, and 2E is spin
MTSpin ∧ BU(1)2γ ≃ MTSpin ∧ Σ4BU(1)

n = 4: X = BZ/2; 4σ is spin

check: for any real bundle E , 2E is oriented, and 4E is spin
MTSpin ∧ (BZ/2)4σ+ ≃ MTSpin ∧ Σ4BZ/2.
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