A Long Exact Sequence in Symmetry Breaking

order parameter constraints, defect anomaly-matching, and higher Berry phases

Cameron Krulewski (MIT) and Yu Leon Liu (Harvard)

Joint with Arun Debray, Sanath Devalapurkar, Natalia Pacheco-Tallaj, and Ryan Thorngren arXiv: 2309.16749

November 7, 2023

Outline

(1) Physics of SBLESs

- Background on Anomalies
- Symmetry Breaking Long Exact Sequence
- Residual Anomaly Map
- Defect Anomaly Map
- Index Map
(2) Math and Applications
- Deriving the SBLES
- Application 1: Computing Anomaly Matching
- Application 2: Computing Anomaly Groups
- Bonus: Periodic Families

End Goal: Symmetry Breaking Long Exact Sequence

't Hooft Anomalies

Consider a D-dim'l theory Z with symmetry G. What does its 't Hooft anomaly β represent?

＇t Hooft Anomalies

Consider a D－dim＇l theory Z with symmetry G ．What does its＇t Hooft anomaly β represent？
－β is the obstruction to gauging the G symmetry．

't Hooft Anomalies

Consider a D-dim'l theory Z with symmetry G. What does its 't Hooft anomaly β represent?

- β is the obstruction to gauging the G symmetry.
- β is the obstruction to gauge-invariantly coupling Z to G-gauge fields.

't Hooft Anomalies

Consider a D-dim'l theory Z with symmetry G. What does its 't Hooft anomaly β represent?

- β is the obstruction to gauging the G symmetry.
- β is the obstruction to gauge-invariantly coupling Z to G-gauge fields.
- β is the obstruction for Z to be symmetrically nondegenerately gapped; that is, to symmetrically deforming Z to have a nondegenerate gapped ground state.

't Hooft Anomalies

Consider a D-dim'l theory Z with symmetry G. What does its 't Hooft anomaly β represent?

- β is the obstruction to gauging the G symmetry.
- β is the obstruction to gauge-invariantly coupling Z to G-gauge fields.
- β is the obstruction for Z to be symmetrically nondegenerately gapped; that is, to symmetrically deforming Z to have a nondegenerate gapped ground state.
- Bulk-boundary: β is a $D+1$-dim'I SPT and Z is a boundary theory of β.

't Hooft Anomalies

Consider a D-dim'l theory Z with symmetry G. What does its 't Hooft anomaly β represent?

- β is the obstruction to gauging the G symmetry.
- β is the obstruction to gauge-invariantly coupling Z to G-gauge fields.
- β is the obstruction for Z to be symmetrically nondegenerately gapped; that is, to symmetrically deforming Z to have a nondegenerate gapped ground state.
- Bulk-boundary: β is a $D+1$-dim'l SPT and Z is a boundary theory of β.
- Mathematical classification: the anomaly $\beta \in \Omega_{G}^{D+1}$ lives in a cohomology class (more on this in the math section) [Kap14; Kap+15; FH21].

Families of Anomalies

Anomalies can also appear in families [TE18; Kom+19; Tho17; Cór+20; KS20; HKT20a; Wen+21].

Families of Anomalies

Anomalies can also appear in families [TE18; Kom+19; Tho17; Cór+20; KS20; HKT20a; Wen+21].

- Suppose $Z[\phi]$ depends on a parameter $\phi \in M$. Then we can couple Z to a background field $\phi(x)$. The anomaly β is the obstruction for the partition function $Z[\phi(x)]$ to be consistently defined for all ϕ. If it is anomalous, the partition function is a section of a non-trivial line bundle.

Families of Anomalies

Anomalies can also appear in families [TE18; Kom+19; Tho17; Cór+20; KS20; HKT20a; Wen+21].

- Suppose $Z[\phi]$ depends on a parameter $\phi \in M$. Then we can couple Z to a background field $\phi(x)$. The anomaly β is the obstruction for the partition function $Z[\phi(x)]$ to be consistently defined for all ϕ. If it is anomalous, the partition function is a section of a non-trivial line bundle.
- The family anomaly β is an obstruction to deforming $Z[\phi]$ such that $Z[\phi]$ is nondegeneratedly gapped for all values of $\phi \in M$.

Families of Anomalies

Anomalies can also appear in families [TE18; Kom+19; Tho17; Cór+20; KS20; HKT20a; Wen+21].

- Suppose $Z[\phi]$ depends on a parameter $\phi \in M$. Then we can couple Z to a background field $\phi(x)$. The anomaly β is the obstruction for the partition function $Z[\phi(x)]$ to be consistently defined for all ϕ. If it is anomalous, the partition function is a section of a non-trivial line bundle.
- The family anomaly β is an obstruction to deforming $Z[\phi]$ such that $Z[\phi]$ is nondegeneratedly gapped for all values of $\phi \in M$.
- Note that G can act on M, in which case we want to equivariantly deform Z.

Families of Anomalies

Anomalies can also appear in families [TE18; Kom+19; Tho17; Cór+20; KS20; HKT20a; Wen+21].

- Suppose $Z[\phi]$ depends on a parameter $\phi \in M$. Then we can couple Z to a background field $\phi(x)$. The anomaly β is the obstruction for the partition function $Z[\phi(x)]$ to be consistently defined for all ϕ. If it is anomalous, the partition function is a section of a non-trivial line bundle.
- The family anomaly β is an obstruction to deforming $Z[\phi]$ such that $Z[\phi]$ is nondegeneratedly gapped for all values of $\phi \in M$.
- Note that G can act on M, in which case we want to equivariantly deform Z.
- Mathematical classification: $\beta \in \Omega_{G}^{D+1}(M)$.

Motivation: ρ-gappability

- Consider a D-dim'I theory Z with G symmetry and anomaly $\beta \neq 0 \in \Omega_{G}^{D+1}$. In the absence of gravitational anomalies we expect that we can gap Z by breaking G.

Motivation: ρ-gappability

- Consider a D-dim'l theory Z with G symmetry and anomaly $\beta \neq 0 \in \Omega_{G}^{D+1}$. In the absence of gravitational anomalies we expect that we can gap Z by breaking G.
- Question: Let ρ be a k-dim'l representation of G. Can we gap the theory using a symmetry breaking parameter ϕ transforming in the representation ρ ?

Motivation: ρ-gappability

- Consider a D-dim'l theory Z with G symmetry and anomaly $\beta \neq 0 \in \Omega_{G}^{D+1}$. In the absence of gravitational anomalies we expect that we can gap Z by breaking G.
- Question: Let ρ be a k-dim'l representation of G. Can we gap the theory using a symmetry breaking parameter ϕ transforming in the representation ρ ?

Definition

A theory is ρ-gappable if there are order parameters $\left(\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{k}\right)$, transforming in ρ under G, such that $H_{\left(c_{1}, \ldots, c_{n}\right)}=H_{0}+\sum_{j} c_{j} \int d^{D} x \mathcal{O}_{j}(x)$ has a gapped, nondegenerate ground state for large enough radius $R=\sum_{j}\left|c_{j}\right|^{2}$.

Motivation: ρ-gappability

- Consider a D-dim'l theory Z with G symmetry and anomaly $\beta \neq 0 \in \Omega_{G}^{D+1}$. In the absence of gravitational anomalies we expect that we can gap Z by breaking G.
- Question: Let ρ be a k-dim'l representation of G. Can we gap the theory using a symmetry breaking parameter ϕ transforming in the representation ρ ?

Definition

A theory is ρ-gappable if there are order parameters $\left(\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{k}\right)$, transforming in ρ under G, such that $H_{\left(c_{1}, \ldots, c_{n}\right)}=H_{0}+\sum_{j} c_{j} \int d^{D} x \mathcal{O}_{j}(x)$ has a gapped, nondegenerate ground state for large enough radius $R=\sum_{j}\left|c_{j}\right|^{2}$.

- e.g.: Consider a $3+1$ Dirac fermion ψ with anomalous $G=U(1)_{L}$ symmetry. It is ρ-gappable for $\rho=\underline{1}$, given by the Dirac mass terms $\left(\mathcal{O}_{1}=\bar{\psi} \psi, \mathcal{O}_{2}=i \bar{\psi} \gamma^{5} \psi\right)$.

ρ-gappability and Residual Anomalies

- If ρ is the trivial representation, then Z is ρ-gappable if it is symmetrically gappable, equivalently, if the anomaly $\beta=0$.

ρ-gappability and Residual Anomalies

- If ρ is the trivial representation, then Z is ρ-gappable if it is symmetrically gappable, equivalently, if the anomaly $\beta=0$.
- Question: Do we have an anomaly interpretation of ρ-gappability?

ρ-gappability and Residual Anomalies

- If ρ is the trivial representation, then Z is ρ-gappable if it is symmetrically gappable, equivalently, if the anomaly $\beta=0$.
- Question: Do we have an anomaly interpretation of ρ-gappability?
- View Z as a theory trivially coupled to $\phi \in M=S(\rho)$, to ρ-gap the theory means to (equivariantly) gap this family of theories over the sphere $S(\rho)$.

ρ-gappability and Residual Anomalies

- If ρ is the trivial representation, then Z is ρ-gappable if it is symmetrically gappable, equivalently, if the anomaly $\beta=0$.
- Question: Do we have an anomaly interpretation of ρ-gappability?
- View Z as a theory trivially coupled to $\phi \in M=S(\rho)$, to ρ-gap the theory means to (equivariantly) gap this family of theories over the sphere $S(\rho)$.
- On anomalies, there is a residual anomaly map:

$$
\operatorname{Res}_{\rho}: \Omega_{G}^{D+1} \rightarrow \Omega_{G}^{D+1}(S(\rho)) .
$$

ρ-gappability and Residual Anomalies

- If ρ is the trivial representation, then Z is ρ-gappable if it is symmetrically gappable, equivalently, if the anomaly $\beta=0$.
- Question: Do we have an anomaly interpretation of ρ-gappability?
- View Z as a theory trivially coupled to $\phi \in M=S(\rho)$, to ρ-gap the theory means to (equivariantly) gap this family of theories over the sphere $S(\rho)$.
- On anomalies, there is a residual anomaly map:

$$
\operatorname{Res}_{\rho}: \Omega_{G}^{D+1} \rightarrow \Omega_{G}^{D+1}(S(\rho)) .
$$

- $\operatorname{Res}_{\rho}(\beta)$ is the obstruction to gapping Z over $S(\rho)$:
Z is ρ-gappable if and only if $\operatorname{Res}_{\rho}(\beta)=0$.

Example： $2+1$ D Majorana Fermion

－Let＇s do an example where the theory is not ρ－gappable．

Example： $2+1$ D Majorana Fermion

－Let＇s do an example where the theory is not ρ－gappable．
－Consider a $2+1 \mathrm{D}$ Majorana fermion ψ with time reversal symmetry T ．

Example: $2+1$ D Majorana Fermion

- Let's do an example where the theory is not ρ-gappable.
- Consider a $2+1 \mathrm{D}$ Majorana fermion ψ with time reversal symmetry T.
- Take ρ_{0} be the sign representation. Then the theory is ρ_{0}-gappable via the T-odd mass term $\mathcal{O}=\psi \psi$.

Example: $2+1$ Majorana Fermion

- Let's do an example where the theory is not ρ-gappable.
- Consider a $2+1 \mathrm{D}$ Majorana fermion ψ with time reversal symmetry T.
- Take ρ_{0} be the sign representation. Then the theory is ρ_{0}-gappable via the T-odd mass term $\mathcal{O}=\psi \psi$.
- Take $\rho=\rho_{0} \oplus \rho_{0}$. Is the theory ρ-gappable? That is, can we find two T-odd operators $\mathcal{O}_{1}, \mathcal{O}_{2}$ such that

$$
H_{0}+r \sin (\theta) \mathcal{O}_{1}+r \cos (\theta) \mathcal{O}_{2}
$$

is gapped for any θ and large enough r ?

Example: $2+1$ Majorana Fermion

- Let's do an example where the theory is not ρ-gappable.
- Consider a $2+1 \mathrm{D}$ Majorana fermion ψ with time reversal symmetry T.
- Take ρ_{0} be the sign representation. Then the theory is ρ_{0}-gappable via the T-odd mass term $\mathcal{O}=\psi \psi$.
- Take $\rho=\rho_{0} \oplus \rho_{0}$. Is the theory ρ-gappable? That is, can we find two T-odd operators $\mathcal{O}_{1}, \mathcal{O}_{2}$ such that

$$
H_{0}+r \sin (\theta) \mathcal{O}_{1}+r \cos (\theta) \mathcal{O}_{2}
$$

is gapped for any θ and large enough r ?

- We claim that the answer is no! There are no operators $\mathcal{O}_{1}, \mathcal{O}_{2}$ that can make this happen!

Example： $2+1$ Majorana Fermion II

－Trivial example： $\mathcal{O}_{1}=\mathcal{O}_{2}=\bar{\psi} \psi$ ．

Example: $2+1$ Majorana Fermion II

- Trivial example: $\mathcal{O}_{1}=\mathcal{O}_{2}=\bar{\psi} \psi$.
- Clearly this is not gapped at $\theta= \pm 3 \pi / 4$ where $m=0$. Going from $m<0$ to $m>0$ pumps a $p+i p$ superconductor. Going from $m>0$ to $m<0$ pumps a $p-i p$.

Example: $2+1$ Majorana Fermion II

- Trivial example: $\mathcal{O}_{1}=\mathcal{O}_{2}=\bar{\psi} \psi$.
- Clearly this is not gapped at $\theta= \pm 3 \pi / 4$ where $m=0$. Going from $m<0$ to $m>0$ pumps a $p+i p$ superconductor. Going from $m>0$ to $m<0$ pumps a $p-i p$.
- Claim: The number of $p \pm i p$ pumped mod 2 across half an arc is an invariant.

Anomaly Analysis

- Let's check this on anomalies. The Majorana fermion's anomaly is $1 \in \Omega_{\text {Pin }^{+}}^{4}=\mathbb{Z}_{16}$ [Wit16]. $\Omega_{\text {Pin }^{+}}^{4}\left(S^{1}\right)=\mathbb{Z}_{2}$ counts the number of $p \pm i p \bmod 2$ across the arc.

Anomaly Analysis

- Let's check this on anomalies. The Majorana fermion's anomaly is $1 \in \Omega_{\mathrm{Pin}^{+}}^{4}=\mathbb{Z}_{16}$ [Wit16]. $\Omega_{\mathrm{Pin}^{+}}^{4}\left(S^{1}\right)=\mathbb{Z}_{2}$ counts the number of $p \pm i p \bmod 2$ across the arc.
- Our example above fixes the residual anomaly map

$$
\begin{gathered}
\operatorname{Res}_{\rho}: \Omega_{\mathrm{Pin}^{+}}^{4} \longrightarrow \Omega_{\mathrm{Pin}^{+}}^{4}\left(S^{1}\right) \\
\mathbb{Z}_{16} \longrightarrow \mathbb{Z}_{2} \\
\beta=1 \longmapsto
\end{gathered}
$$

Anomaly Analysis

- Let's check this on anomalies. The Majorana fermion's anomaly is $1 \in \Omega_{\mathrm{Pin}^{+}}^{4}=\mathbb{Z}_{16}$ [Wit16]. $\Omega_{\mathrm{Pin}^{+}}^{4}\left(S^{1}\right)=\mathbb{Z}_{2}$ counts the number of $p \pm i p \bmod 2$ across the arc.
- Our example above fixes the residual anomaly map

$$
\begin{gathered}
\operatorname{Res}_{\rho}: \Omega_{\mathrm{Pin}^{+}}^{4} \longrightarrow \Omega_{\mathrm{Pin}^{+}}^{4}\left(S^{1}\right) \\
\mathbb{Z}_{16} \longrightarrow \mathbb{Z}_{2} \\
\beta=1 \longmapsto
\end{gathered}
$$

- Consequence I: For any choices of T-odd $\mathcal{O}_{1}, \mathcal{O}_{2}$, the number of $p \pm i p$'s pumped across half an arc is odd.

Anomaly Analysis

- Let's check this on anomalies. The Majorana fermion's anomaly is $1 \in \Omega_{\mathrm{Pin}^{+}}^{4}=\mathbb{Z}_{16}$ [Wit16]. $\Omega_{\mathrm{Pin}^{+}}^{4}\left(S^{1}\right)=\mathbb{Z}_{2}$ counts the number of $p \pm i p \bmod 2$ across the arc.
- Our example above fixes the residual anomaly map

$$
\begin{gathered}
\operatorname{Res}_{\rho}: \Omega_{\mathrm{Pin}^{+}}^{4} \longrightarrow \Omega_{\mathrm{Pin}^{+}}^{4}\left(S^{1}\right) \\
\mathbb{Z}_{16} \longrightarrow \mathbb{Z}_{2} \\
\beta=1 \longmapsto 1 \neq 0
\end{gathered}
$$

- Consequence I: For any choices of T-odd $\mathcal{O}_{1}, \mathcal{O}_{2}$, the number of $p \pm i p$'s pumped across half an arc is odd.
- Consequence II: The $2+1 \mathrm{D}$ Majorana fermion is not ρ-gappable.

Symmetry Breaking Long Exact Sequence

Recap I

$$
\Omega_{G}^{D+1} \xrightarrow[\operatorname{Res}_{\rho}]{ } \Omega_{G}^{D+1}(S(\rho))
$$

Topological Defects

- Question: Assume that Z is ρ-gappable $\left(\operatorname{Res}_{\rho}(\beta)=0\right)$. What can the anomaly β tell us?

Topological Defects

- Question: Assume that Z is ρ-gappable $\left(\operatorname{Res}_{\rho}(\beta)=0\right)$. What can the anomaly β tell us?
- This question was answered in [HKT20b] (in the case that $G=\mathbb{Z}_{2}$):

Topological Defects

- Question: Assume that Z is ρ-gappable $\left(\operatorname{Res}_{\rho}(\beta)=0\right)$. What can the anomaly β tell us?
- This question was answered in [HKT20b] (in the case that $G=\mathbb{Z}_{2}$):
- Given a ρ-gapping, where the the order parameter is $\phi \in V_{\rho}$, we can create a defect system by letting ϕ vary in space with the form:

$$
\phi=\left(v_{1} x_{1}+\ldots+v_{k} x_{k}\right) / \sqrt{\sum_{i} x_{i}^{2}}
$$

for large $R=\sqrt{\sum_{i} x_{i}^{2}}$, where the v_{i} form an orthonormal basis of V_{ρ}.

Topological Defects

- Question: Assume that Z is ρ-gappable $\left(\operatorname{Res}_{\rho}(\beta)=0\right)$. What can the anomaly β tell us?
- This question was answered in [HKT20b] (in the case that $G=\mathbb{Z}_{2}$):
- Given a ρ-gapping, where the the order parameter is $\phi \in V_{\rho}$, we can create a defect system by letting ϕ vary in space with the form:

$$
\phi=\left(v_{1} x_{1}+\ldots+v_{k} x_{k}\right) / \sqrt{\sum_{i} x_{i}^{2}}
$$

for large $R=\sqrt{\sum_{i} x_{i}^{2}}$, where the v_{i} form an orthonormal basis of V_{ρ}.

- The defect is localized at $x_{1}=\cdots=x_{k}=0$. Since the system is ρ-gapped, excitations are localized at the defect, which we view as a ($D-k$)-dim'l system.

Topological Defects

- Question: Assume that Z is ρ-gappable $\left(\operatorname{Res}_{\rho}(\beta)=0\right)$. What can the anomaly β tell us?
- This question was answered in [HKT20b] (in the case that $G=\mathbb{Z}_{2}$):
- Given a ρ-gapping, where the the order parameter is $\phi \in V_{\rho}$, we can create a defect system by letting ϕ vary in space with the form:

$$
\phi=\left(v_{1} x_{1}+\ldots+v_{k} x_{k}\right) / \sqrt{\sum_{i} x_{i}^{2}}
$$

for large $R=\sqrt{\sum_{i} x_{i}^{2}}$, where the v_{i} form an orthonormal basis of V_{ρ}.

- The defect is localized at $x_{1}=\cdots=x_{k}=0$. Since the system is ρ-gapped, excitations are localized at the defect, which we view as a ($D-k$)-dim'l system.
- Examples: domain walls $(k=1)$, vortices $(k=2)$, and hedgehogs $(k=3)$.

Defect Anomaly Matching

- Since $\phi=0 \in V_{\rho}$ is a fixed point under G, the defect theory Z_{D} has G_{ρ} symmetry ${ }^{1}$ and anomaly $\alpha \in \Omega_{G_{\rho}}^{D+1-k}$.

[^0]
Defect Anomaly Matching

- Since $\phi=0 \in V_{\rho}$ is a fixed point under G, the defect theory Z_{D} has G_{ρ} symmetry ${ }^{1}$ and anomaly $\alpha \in \Omega_{G_{\rho}}^{D+1-k}$.
- There is a defect anomaly map

$$
\operatorname{Def}_{\rho}: \Omega_{G_{\rho}}^{D+1-k} \rightarrow \Omega_{G}^{D+1}
$$

[^1]
Defect Anomaly Matching

- Since $\phi=0 \in V_{\rho}$ is a fixed point under G, the defect theory Z_{D} has G_{ρ} symmetry ${ }^{1}$ and anomaly $\alpha \in \Omega_{G_{\rho}}^{D+1-k}$.
- There is a defect anomaly map

$$
\operatorname{Def}_{\rho}: \Omega_{G_{\rho}}^{D+1-k} \rightarrow \Omega_{G}^{D+1}
$$

- The anomaly matching condition [HKT20b]:

$$
\operatorname{Def}_{\rho}(\alpha)=\beta
$$

[^2]
Example: $3+1$ Dirac Fermions

- Consider a $3+1$ Dirac fermion ψ with $G=U(1)_{L}$. Its anomaly polynomial is

$$
\beta=\frac{1}{6}\left(c_{1}\right)^{3}-\frac{1}{24} c_{1} p_{1}(T X),
$$

where p_{1} is the first Pontryagin number and X is the $6 D$ test manifold with a principal $U(1)_{L}$ bundle $P .^{2}$

[^3]
Example: $3+1$ Dirac Fermions

- Consider a $3+1$ D Dirac fermion ψ with $G=U(1)_{L}$. Its anomaly polynomial is

$$
\beta=\frac{1}{6}\left(c_{1}\right)^{3}-\frac{1}{24} c_{1} p_{1}(T X),
$$

where p_{1} is the first Pontryagin number and X is the $6 D$ test manifold with a principal $U(1)_{L}$ bundle $P .^{2}$

- Let $\rho=1$. The Dirac mass gives a ρ-gapping and the defect is the axion string [CH85]. A $1+1 \mathrm{D}$ chiral fermion is localized on the axion string with fractional charge $\frac{1}{2}$.

[^4]
Example: $3+1$ Dirac Fermions

- Consider a $3+1$ Dirac fermion ψ with $G=U(1)_{L}$. Its anomaly polynomial is

$$
\beta=\frac{1}{6}\left(c_{1}\right)^{3}-\frac{1}{24} c_{1} p_{1}(T X),
$$

where p_{1} is the first Pontryagin number and X is the $6 D$ test manifold with a principal $U(1)_{L}$ bundle $P .^{2}$

- Let $\rho=1$. The Dirac mass gives a ρ-gapping and the defect is the axion string [CH85]. A $1+1 \mathrm{D}$ chiral fermion is localized on the axion string with fractional charge $\frac{1}{2}$.
- The defect anomaly polynomial is

$$
\begin{equation*}
\alpha=\frac{1}{8}\left(c_{1}\right)^{2}-\frac{1}{24} p_{1}(T Y), \tag{1}
\end{equation*}
$$

where Y is the zero section of a generic section $s: X \rightarrow E_{\rho}=P \times{ }_{U(1) L} V_{\rho}$.
${ }^{2}$ Anomaly polynomials are $D+2$ dimensional characteristic classes whose Chern-Simons form is the anomaly.

Example： $3+1$ Dirac Fermions II

－To compute $\operatorname{Def}_{\rho}(\alpha)$ ，we have

$$
\begin{aligned}
\operatorname{Def}_{\rho}(\alpha) & =c_{1} \alpha \\
& =\frac{1}{8}\left(c_{1}\right)^{3}-\frac{1}{24} c_{1} p_{1}(T Y) .
\end{aligned}
$$

Example: 3 + 1D Dirac Fermions II

- To compute $\operatorname{Def}_{\rho}(\alpha)$, we have

$$
\begin{aligned}
\operatorname{Def}_{\rho}(\alpha) & =c_{1} \alpha \\
& =\frac{1}{8}\left(c_{1}\right)^{3}-\frac{1}{24} c_{1} p_{1}(T Y) .
\end{aligned}
$$

- To relate $T Y$ and $T X$, we use the following formula:

$$
\left.T X\right|_{Y}=\left.T Y \oplus E_{\rho}\right|_{Y}, \quad p_{1}(T X)=p_{1}(T Y)+\left(c_{1}\right)^{2}
$$

Example: 3 + 1D Dirac Fermions II

- To compute $\operatorname{Def}_{\rho}(\alpha)$, we have

$$
\begin{aligned}
\operatorname{Def}_{\rho}(\alpha) & =c_{1} \alpha \\
& =\frac{1}{8}\left(c_{1}\right)^{3}-\frac{1}{24} c_{1} p_{1}(T Y) .
\end{aligned}
$$

- To relate $T Y$ and $T X$, we use the following formula:

$$
\left.T X\right|_{Y}=\left.T Y \oplus E_{\rho}\right|_{Y}, \quad p_{1}(T X)=p_{1}(T Y)+\left(c_{1}\right)^{2}
$$

- Plugging in, we get

$$
\operatorname{Def}_{\rho}(\alpha)=\frac{1}{6}\left(c_{1}\right)^{3}-\frac{1}{24} c_{1} p_{1}(T X)=\beta
$$

Recap II

Recap II

- This is exact at Ω_{G}^{D+1}; i.e., $\operatorname{Res}_{\rho}(\beta)=0$ if and only if there is an $\alpha \in \Omega_{G_{\rho}}^{D+1-k}$ such that $\beta=\operatorname{Def}_{\rho}(\alpha)$.

Recap II

- This is exact at Ω_{G}^{D+1}; i.e., $\operatorname{Res}_{\rho}(\beta)=0$ if and only if there is an $\alpha \in \Omega_{G_{\rho}}^{D+1-k}$ such that $\beta=\operatorname{Def}_{\rho}(\alpha)$.
- β is the anomaly of the defect system created via the ρ-gapping.

Ambiguity in Defect Anomaly Matching

- The defect anomaly determines the bulk. However, this map is not injective: there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory Z with $\beta=0$ can have anomalous defects!

Ambiguity in Defect Anomaly Matching

- The defect anomaly determines the bulk. However, this map is not injective: there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory Z with $\beta=0$ can have anomalous defects!
- Question: What is the ambiguity in the defect anomaly map?

Ambiguity in Defect Anomaly Matching

- The defect anomaly determines the bulk. However, this map is not injective: there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory Z with $\beta=0$ can have anomalous defects!
- Question: What is the ambiguity in the defect anomaly map?
- The defect comes from a ρ-gapping, which assigns a nondegenerate ground state to each point on the sphere $S(\rho)$. This invertible family is not typically free of G-anomalies, but it is when $\beta=0$. Therefore the ρ-gapping defines a D-dim'। SPT class

$$
\gamma \in \Omega_{G}^{D}(S(\rho))
$$

D - 1-dim'I Boundary Theory

- We can also construct a dynamical theory with anomaly γ :

D - 1-dim'I Boundary Theory

- We can also construct a dynamical theory with anomaly γ :
- Recall our ρ-gapping Hamiltonian:

$$
H_{\left(c_{1}, \ldots, c_{n}\right)}=H_{0}+\sum_{j} c_{j} \int d^{D} x \mathcal{O}_{j}(x)
$$

Since Z is anomaly-free, let's assume H_{0} has a symmetric non-degenerate ground state. $H_{c_{1}, \cdots, c_{k}}$ is also gapped for large $R=\sum_{j}\left|c_{j}\right|^{2}$.

D - 1-dim'I Boundary Theory

- We can also construct a dynamical theory with anomaly γ :
- Recall our ρ-gapping Hamiltonian:

$$
H_{\left(c_{1}, \ldots, c_{n}\right)}=H_{0}+\sum_{j} c_{j} \int d^{D} x \mathcal{O}_{j}(x)
$$

Since Z is anomaly-free, let's assume H_{0} has a symmetric non-degenerate ground state. $H_{c_{1}, \cdots, c_{k}}$ is also gapped for large $R=\sum_{j}\left|c_{j}\right|^{2}$.

- If γ describes a nontrivial SPT, then there is some point $\left(c_{1}, \ldots, c_{n}\right)$ with radius $r \leq R$ such that $H_{\left(c_{1}, \ldots, c_{n}\right)}$ fails to be nondegenerately gapped.

D - 1-dim'I Boundary Theory

- We can also construct a dynamical theory with anomaly γ :
- Recall our ρ-gapping Hamiltonian:

$$
H_{\left(c_{1}, \ldots, c_{n}\right)}=H_{0}+\sum_{j} c_{j} \int d^{D} x \mathcal{O}_{j}(x)
$$

Since Z is anomaly-free, let's assume H_{0} has a symmetric non-degenerate ground state. $H_{c_{1}, \cdots, c_{k}}$ is also gapped for large $R=\sum_{j}\left|c_{j}\right|^{2}$.

- If γ describes a nontrivial SPT, then there is some point $\left(c_{1}, \ldots, c_{n}\right)$ with radius $r \leq R$ such that $H_{\left(c_{1}, \ldots, c_{n}\right)}$ fails to be nondegenerately gapped.

Index Anomaly Matching

－The theory $H_{c_{1}, \ldots, c_{n}}$ for $\sum_{j}\left|c_{j}\right|^{2}=r$ is a $D-1$ dim＇l theory with parameter space $S(\rho)$ ，whose family anomaly is $\gamma \in \Omega^{D}(S(\rho))$ ．

Index Anomaly Matching

- The theory $H_{c_{1}, \ldots, c_{n}}$ for $\sum_{j}\left|c_{j}\right|^{2}=r$ is a $D-1$ dim'l theory with parameter space $S(\rho)$, whose family anomaly is $\gamma \in \Omega^{D}(S(\rho))$.
- The defect is created by shrinking the $D-1$ theory on $S(\rho)$ to a point.

Index Anomaly Matching

- The theory $H_{c_{1}, \ldots, c_{n}}$ for $\sum_{j}\left|c_{j}\right|^{2}=r$ is a $D-1$ dim'l theory with parameter space $S(\rho)$, whose family anomaly is $\gamma \in \Omega^{D}(S(\rho))$.
- The defect is created by shrinking the $D-1$ theory on $S(\rho)$ to a point.
- On anomalies, this is the generalization of Callias index theorem [Cal78; BS78], which counts the fermion zero modes at the core of a mass defect.

Index Anomaly Matching

- The theory $H_{c_{1}, \ldots, c_{n}}$ for $\sum_{j}\left|c_{j}\right|^{2}=r$ is a $D-1$ dim'l theory with parameter space $S(\rho)$, whose family anomaly is $\gamma \in \Omega^{D}(S(\rho))$.
- The defect is created by shrinking the $D-1$ theory on $S(\rho)$ to a point.
- On anomalies, this is the generalization of Callias index theorem [Cal78; BS78], which counts the fermion zero modes at the core of a mass defect.
- There is an index map

$$
\operatorname{Ind}_{\rho}: \Omega_{G}^{D}(S(\rho)) \rightarrow \Omega_{G_{\rho}}^{D+1-k}
$$

Index Anomaly Matching

- The theory $H_{c_{1}, \ldots, c_{n}}$ for $\sum_{j}\left|c_{j}\right|^{2}=r$ is a $D-1$ dim'l theory with parameter space $S(\rho)$, whose family anomaly is $\gamma \in \Omega^{D}(S(\rho))$.
- The defect is created by shrinking the $D-1$ theory on $S(\rho)$ to a point.
- On anomalies, this is the generalization of Callias index theorem [Cal78; BS78], which counts the fermion zero modes at the core of a mass defect.
- There is an index map

$$
\operatorname{Ind}_{\rho}: \Omega_{G}^{D}(S(\rho)) \rightarrow \Omega_{G_{\rho}}^{D+1-k}
$$

- Index anomaly matching:

$$
\operatorname{Ind}_{\rho}(\gamma)=\beta
$$

Example：Thouless Pump

－Consider a $1+1$ Dirac fermion ψ with anomaly－free $U(1) v$ ．There is a symmetry preserving（ $\rho=\mathbb{R}^{2}$ ）Dirac mass term

$$
\cos (\phi) \bar{\psi} \psi+i \sin (\phi) \bar{\psi} \gamma^{c} \psi
$$

$\gamma^{c}=i \gamma^{0} \gamma^{1}$.

Example：Thouless Pump

－Consider a $1+1$ Dirac fermion ψ with anomaly－free $U(1) v$ ．There is a symmetry preserving（ $\rho=\mathbb{R}^{2}$ ）Dirac mass term

$$
\cos (\phi) \bar{\psi} \psi+i \sin (\phi) \bar{\psi} \gamma^{c} \psi
$$

$\gamma^{c}=i \gamma^{0} \gamma^{1}$.
－This defines a non－trivial SPT $\gamma=\mathrm{Ad} \phi$ ．

Example: Thouless Pump

- Consider a $1+1$ Dirac fermion ψ with anomaly-free $U(1)_{V}$. There is a symmetry preserving ($\rho=\mathbb{R}^{2}$) Dirac mass term

$$
\cos (\phi) \bar{\psi} \psi+i \sin (\phi) \bar{\psi} \gamma^{c} \psi
$$

$\gamma^{c}=i \gamma^{0} \gamma^{1}$.

- This defines a non-trivial SPT $\gamma=$ Ad ϕ.
- Adding a mass term $\bar{\psi} \psi$ so H_{0} is gapped, we have

$$
(x+1) \bar{\psi} \psi+i y \bar{\psi} \gamma^{c} \psi \subset H_{(x, y)}
$$

This family fails to be gapped at $(x=-1, y=0)$, where the fermion becomes massless.

Example: Thouless Pump

- Consider a $1+1$ Dirac fermion ψ with anomaly-free $U(1)_{V}$. There is a symmetry preserving ($\rho=\mathbb{R}^{2}$) Dirac mass term

$$
\cos (\phi) \bar{\psi} \psi+i \sin (\phi) \bar{\psi} \gamma^{c} \psi
$$

$\gamma^{c}=i \gamma^{0} \gamma^{1}$.

- This defines a non-trivial SPT $\gamma=\operatorname{Ad} \phi$.
- Adding a mass term $\bar{\psi} \psi$ so H_{0} is gapped, we have

$$
(x+1) \bar{\psi} \psi+i y \bar{\psi} \gamma^{c} \psi \subset H_{(x, y)}
$$

This family fails to be gapped at $(x=-1, y=0)$, where the fermion becomes massless.

- Viewing the S^{1} parameter theory at $r=1$ as the boundary of γ, we see that when we adiabatically vary the S^{1} parameter ϕ, we pump a quantized charge to the boundary [Tho83].

Example：Thouless Pump II

－The ρ－defect is the operator that creates a vortex in ϕ ．It carries an unit charge under $U(1)$ ，matching the Thouless pump．

Example: Thouless Pump II

- The ρ-defect is the operator that creates a vortex in ϕ. It carries an unit charge under $U(1)$, matching the Thouless pump.
- On anomalies:

$$
\begin{array}{r}
\operatorname{Ind}_{\rho}: \Omega_{\operatorname{Spin}^{c}}^{2}\left(S^{1}\right) \xrightarrow{\simeq} \Omega_{\operatorname{Spin}^{c}}^{1} \\
\mathbb{Z} \longrightarrow \mathbb{Z} .
\end{array}
$$

Example: Thouless Pump II

- The ρ-defect is the operator that creates a vortex in ϕ. It carries an unit charge under $U(1)$, matching the Thouless pump.
- On anomalies:

$$
\begin{array}{r}
\operatorname{Ind}_{\rho}: \Omega_{\operatorname{Spin}^{c}}^{2}\left(S^{1}\right) \xrightarrow{\simeq} \Omega_{\operatorname{Spin}^{c}}^{1} \\
\mathbb{Z} \longrightarrow \mathbb{Z} .
\end{array}
$$

- The first group counts the charges pumped when we vary S^{1} parameter ϕ; the latter computes the $U(1)$ charge of the ϕ-vortex.

Recap III

- We have a sequence of maps:

$$
\Omega_{G}^{D}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \xrightarrow{\operatorname{Def}_{\rho}} \Omega_{G}^{D+1} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D+1}(S(\rho))
$$

Recap III

- We have a sequence of maps:

$$
\Omega_{G}^{D}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \xrightarrow{\operatorname{Def}_{\rho}} \Omega_{G}^{D+1} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D+1}(S(\rho))
$$

- This is exact at $\Omega_{G_{\rho}}^{D+1-k}: \operatorname{Def}_{\rho}(\alpha)=0$ if and only if $\alpha=\operatorname{Ind}_{\rho}(\gamma)$ for some $\gamma \in \Omega_{G}^{D}(S(\rho))$.

Recap III

- We have a sequence of maps:

$$
\Omega_{G}^{D}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \xrightarrow{\operatorname{Def}_{\rho}} \Omega_{G}^{D+1} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D+1}(S(\rho))
$$

- This is exact at $\Omega_{G_{\rho}}^{D+1-k}: \operatorname{Def}_{\rho}(\alpha)=0$ if and only if $\alpha=\operatorname{Ind}_{\rho}(\gamma)$ for some $\gamma \in \Omega_{G}^{D}(S(\rho))$.
- Rolling over:

$$
\Omega_{G}^{D} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} .
$$

Recap III

- We have a sequence of maps:

$$
\Omega_{G}^{D}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \xrightarrow{\operatorname{Def}_{\rho}} \Omega_{G}^{D+1} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D+1}(S(\rho))
$$

- This is exact at $\Omega_{G_{\rho}}^{D+1-k}: \operatorname{Def}_{\rho}(\alpha)=0$ if and only if $\alpha=\operatorname{Ind}_{\rho}(\gamma)$ for some $\gamma \in \Omega_{G}^{D}(S(\rho))$.
- Rolling over:

$$
\Omega_{G}^{D} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} .
$$

- This is exact at $\Omega_{G}^{D}(S(\rho))$.

Symmetry Breaking Long Exact Sequence

Completing the Circle

- We can infinitely continue this long exact sequence:

$$
\cdots \Omega_{G}^{D} \xrightarrow{\text { Res }_{\rho}} \Omega_{G}^{D}(S(\rho)) \xrightarrow{\text { Ind }_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \xrightarrow{\text { Def }_{\rho}} \Omega_{G}^{D+1} \xrightarrow{\text { Res }_{\rho}} \Omega_{G}^{D+1}(S(\rho)) \xrightarrow{\text { Ind }_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \ldots
$$

Completing the Circle

- We can infinitely continue this long exact sequence:

$$
\cdots \Omega_{G}^{D} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \xrightarrow{\operatorname{Def}_{\rho}} \Omega_{G}^{D+1} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D+1}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \ldots
$$

Completing the Circle

- We can infinitely continue this long exact sequence:
$\cdots \Omega_{G}^{D} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \xrightarrow{\operatorname{Def}_{\rho}} \Omega_{G}^{D+1} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D+1}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \ldots$

Part II：Math and Applications

（1）How to mathematically derive the SBLES
（2）How to apply it
（1）Computing Def $_{\rho}$ to perform anomaly matching
（2）Computing anomaly groups

Part II：Math and Applications

（1）How to mathematically derive the SBLES
（2）How to apply it
（1）Computing Def $_{\rho}$ to perform anomaly matching
（2）Computing anomaly groups

SBLES as Induced by a Map of Spectra

$M T$ Spin $\wedge B G$

SBLES as Induced by a Map of Spectra

- Specialize to fermions.

SBLES as Induced by a Map of Spectra

- Specialize to fermions.
- Idea: Fiber sequence of spectra $\stackrel{\text { take cohomology }}{\rightsquigarrow}$ long exact sequence

Deriving the SBLES

Example SBLES and Map of Spectra

Running example：

Example SBLES and Map of Spectra

Running example:

- $\Omega_{\mathrm{Pin}^{+}}^{D+1}=\Omega_{\mathbb{Z} / 2, f}^{D+1}$ fermions with internal time-reversal symmetry with $T^{2}=(-1)^{F}$

Example SBLES and Map of Spectra

Running example：
－$\Omega_{\mathrm{Pin}^{+}}^{D+1}=\Omega_{\mathbb{Z} / 2, f}^{D+1}$ fermions with internal time－reversal symmetry with $T^{2}=(-1)^{F}$
－Symmetry－breaking order parameter：$\rho=\sigma$ ，the sign representation of $\mathbb{Z} / 2$

Example SBLES and Map of Spectra

Running example:

- $\Omega_{\operatorname{Pin}^{+}}^{D+1}=\Omega_{\mathbb{Z} / 2, f}^{D+1}$ fermions with internal time-reversal symmetry with $T^{2}=(-1)^{F}$
- Symmetry-breaking order parameter: $\rho=\sigma$, the sign representation of $\mathbb{Z} / 2$
- $\Omega_{\text {Spin } \times \mathbb{Z} / 2}^{D}=\Omega_{\mathbb{Z} / 2^{\rho}, f}^{D}$: fermions with internal $\mathbb{Z} / 2$ unitary symmetry $U^{2}=1$.

Tangential Structures

－A stable tangential structure is a map $\xi: B \rightarrow B O$ ． A manifold X has ξ－structure if the classifying map f of $T X$ has a lift to the space B ．

Examples：

Tangential Structures

- A stable tangential structure is a map $\xi: B \rightarrow B O$. A manifold X has ξ-structure if the classifying map f of $T X$ has a lift to the space B.

Examples:

- $B=B S O$: bosonic theories

Tangential Structures

- A stable tangential structure is a map $\xi: B \rightarrow B O$. A manifold X has ξ-structure if the classifying map f of $T X$ has a lift to the space B.

Examples:

- $B=B S O$: bosonic theories
- $B=B S$ pin $\wedge B G$: fermionic theories with G-symmetry

Tangential Structures

－A stable tangential structure is a map $\xi: B \rightarrow B O$ ． A manifold X has ξ－structure if the classifying map f of $T X$ has a lift to the space B ．

Examples：
－$B=B S O$ ：bosonic theories
－$B=B \operatorname{Spin} \wedge B G$ ：fermionic theories with G－symmetry
－$B=B$ Spin $\times B \mathbb{Z} / 2$ ：fermionic with internal unitary symmetry $U^{2}=1$
－$B=B$ Pin $^{+}$：fermionic with internal time reversal symmetry $T^{2}=(-1)^{F}$

Tangential Structures

- A stable tangential structure is a $\operatorname{map} \xi: B \rightarrow B O$. A manifold X has ξ-structure if the classifying map f of $T X$ has a lift to the space B.

Examples:

- $B=B S O$: bosonic theories
- $B=B \operatorname{Spin} \wedge B G$: fermionic theories with G-symmetry
- $B=B$ Spin $\times B \mathbb{Z} / 2$: fermionic with internal unitary symmetry $U^{2}=1$
- $B=B \operatorname{Pin}^{+}$: fermionic with internal time reversal symmetry $T^{2}=(-1)^{F}$
- $B=B \operatorname{Spin} \times B U(1)$: fermionic with internal $U(1)$ symmetry

Tangential Structures

- A stable tangential structure is a $\operatorname{map} \xi: B \rightarrow B O$. A manifold X has ξ-structure if the classifying map f of $T X$ has a lift to the space B.

Examples:

- $B=B S O$: bosonic theories
- $B=B \operatorname{Spin} \wedge B G$: fermionic theories with G-symmetry
- $B=B$ Spin $\times B \mathbb{Z} / 2$: fermionic with internal unitary symmetry $U^{2}=1$
- $B=B$ Pin $^{+}$: fermionic with internal time reversal symmetry $T^{2}=(-1)^{F}$
- $B=B \operatorname{Spin} \times B U(1)$: fermionic with internal $U(1)$ symmetry
- $B=B \operatorname{Spin}^{c}$: complex fermionic with fractional charge

Madsen－Tillman Spectra and Anomalies

Madsen－Tillman Spectra and Anomalies
－Fix a stable tangential structure $\xi: B \rightarrow B O$（e．g．$\xi: B \mathrm{Pin}^{+} \rightarrow B O$ for fermions with $T^{2}=(-1)^{F}$ ）

Madsen-Tillman Spectra and Anomalies

- Fix a stable tangential structure $\xi: B \rightarrow B O$ (e.g. $\xi: B \mathrm{Pin}^{+} \rightarrow B O$ for fermions with $T^{2}=(-1)^{F}$)
- "Definition": The Madsen-Tillman spectrum MT ξ is the Thom spectrum of the inverse of ξ, written $B^{-\xi}$. (e.g. MTPin ${ }^{+}$)

Madsen-Tillman Spectra and Anomalies

- Fix a stable tangential structure $\xi: B \rightarrow B O$ (e.g. $\xi: B \mathrm{Pin}^{+} \rightarrow B O$ for fermions with $T^{2}=(-1)^{F}$)
- "Definition": The Madsen-Tillman spectrum MT ξ is the Thom spectrum of the inverse of ξ, written $B^{-\xi}$. (e.g. MTPin ${ }^{+}$)
- Idea: The Madsen-Tillman spectrum MT ξ is such that

Madsen-Tillman Spectra and Anomalies

- Fix a stable tangential structure $\xi: B \rightarrow B O$ (e.g. $\xi: B \mathrm{Pin}^{+} \rightarrow B O$ for fermions with $T^{2}=(-1)^{F}$)
- "Definition": The Madsen-Tillman spectrum MT ξ is the Thom spectrum of the inverse of ξ, written $B^{-\xi}$. (e.g. MTPin ${ }^{+}$)
- Idea: The Madsen-Tillman spectrum MT ξ is such that

Ansatz ([FH21])

$$
\left\{\begin{array}{l}
\text { anomaly groups } \\
\text { of } D \text {-dim'l theories } \\
\text { with symmetry }(B, \xi)
\end{array}\right\} \cong I_{\mathbb{Z}}^{D+2}(M T \xi)
$$

Madsen-Tillman Spectra and Anomalies

- Fix a stable tangential structure $\xi: B \rightarrow B O$ (e.g. $\xi: B \mathrm{Pin}^{+} \rightarrow B O$ for fermions with $T^{2}=(-1)^{F}$)
- "Definition": The Madsen-Tillman spectrum MT ξ is the Thom spectrum of the inverse of ξ, written $B^{-\xi}$. (e.g. MTPin ${ }^{+}$)
- Idea: The Madsen-Tillman spectrum MT ξ is such that

Ansatz ([FH21])

$$
\left\{\begin{array}{l}
\text { anomaly groups } \\
\text { of } D \text {-dim'l theories } \\
\text { with symmetry }(B, \xi)
\end{array}\right\} \cong I_{\mathbb{Z}}^{D+2}(M T \xi)
$$

- e.g. $M T \mathrm{Pin}^{+}$is such that...

Madsen-Tillman Spectra and Anomalies

- Fix a stable tangential structure $\xi: B \rightarrow B O$ (e.g. $\xi: B \mathrm{Pin}^{+} \rightarrow B O$ for fermions with $T^{2}=(-1)^{F}$)
- "Definition": The Madsen-Tillman spectrum MT ξ is the Thom spectrum of the inverse of ξ, written $B^{-\xi}$. (e.g. MTPin ${ }^{+}$)
- Idea: The Madsen-Tillman spectrum MT ξ is such that

Ansatz ([FH21])

$$
\left\{\begin{array}{l}
\text { anomaly groups } \\
\text { of } D \text {-dim'l theories } \\
\text { with symmetry }(B, \xi)
\end{array}\right\} \cong I_{\mathbb{Z}}^{D+2}(M T \xi)
$$

- e.g. $M T \mathrm{Pin}^{+}$is such that...
- $I_{\mathbb{Z}}^{4}\left(M T \operatorname{Pin}^{+}\right) \cong \mathbb{Z} / 16$ ($2+1 \mathrm{D}$ Majorana)

Madsen-Tillman Spectra and Anomalies

- Fix a stable tangential structure $\xi: B \rightarrow B O$ (e.g. $\xi: B \mathrm{Pin}^{+} \rightarrow B O$ for fermions with $T^{2}=(-1)^{F}$)
- "Definition": The Madsen-Tillman spectrum MT ξ is the Thom spectrum of the inverse of ξ, written $B^{-\xi}$. (e.g. MTPin ${ }^{+}$)
- Idea: The Madsen-Tillman spectrum MT ξ is such that

Ansatz ([FH21])

$$
\left\{\begin{array}{l}
\text { anomaly groups } \\
\text { of } D \text {-dim'l theories } \\
\text { with symmetry }(B, \xi)
\end{array}\right\} \cong I_{\mathbb{Z}}^{D+2}(M T \xi)
$$

- e.g. $M T \mathrm{Pin}^{+}$is such that...
- $I_{\mathbb{Z}}^{4}\left(M T \operatorname{Pin}^{+}\right) \cong \mathbb{Z} / 16$ ($2+1 \mathrm{D}$ Majorana)

Theorem (Pontrjagin-Thom)

$\pi_{d}(M T \xi) \cong \Omega_{d}^{\xi}=\{$ manifolds with (B, ξ)-structure $\} / \sim$.

Madsen-Tillman Spectra and Anomalies

- Fix a stable tangential structure $\xi: B \rightarrow B O$ (e.g. $\xi: B \mathrm{Pin}^{+} \rightarrow B O$ for fermions with $T^{2}=(-1)^{F}$)
- "Definition": The Madsen-Tillman spectrum MT ξ is the Thom spectrum of the inverse of ξ, written $B^{-\xi}$. (e.g. MTPin ${ }^{+}$)
- Idea: The Madsen-Tillman spectrum MT ξ is such that

Ansatz ([FH21])

$$
\left\{\begin{array}{l}
\text { anomaly groups } \\
\text { of } D \text {-dim'l theories } \\
\text { with symmetry }(B, \xi)
\end{array}\right\} \cong I_{\mathbb{Z}}^{D+2}(M T \xi)
$$

- e.g. $M T \mathrm{Pin}^{+}$is such that...
- $I_{\mathbb{Z}}^{4}\left(M T \operatorname{Pin}^{+}\right) \cong \mathbb{Z} / 16$ ($2+1 \mathrm{D}$ Majorana)

Theorem (Pontrjagin-Thom)

- $\pi_{2}\left(M T \operatorname{Pin}^{+}\right) \cong \Omega_{2}^{\text {Pin }^{+}} \cong \mathbb{Z} / 2$ (Klein bottle)

Madsen－Tillman Spectra and Anomalies－Takeaway

－Fix a stable tangential structure $\xi: B \rightarrow B O$（e．g．$\xi: B$ Pin $^{+} \rightarrow B O$ for fermions with $\left.T^{2}=(-1)^{F}\right)$
－＂Definition＂：The Madsen－Tillman spectrum MT ξ is the Thom spectrum of the inverse of ξ ，written $B^{-\xi}$ ．（e．g．MTPin ${ }^{+}$）
－Idea：The Madsen－Tillman spectrum MT ξ is such that

Ansatz（［FH21］）

$$
\left\{\begin{array}{l}
\text { anomaly groups } \\
\text { for } D \text {-dim'I theories } \\
\text { with symmetry }(B, \xi)
\end{array}\right\} \cong I_{\mathbb{Z}}^{D+2}(M T \xi)=\Omega_{\xi}^{D+1}
$$

－e．g．MTPin ${ }^{+}$is such that．
－$I^{4}\left(\right.$ MTPin $\left.^{+}\right) \cong \mathbb{Z} / 16$ （2＋1D Majorana）
－$\pi_{2}\left(\right.$ MTPin $\left.^{+}\right) \cong \Omega_{2}^{\text {Pin }^{+}} \cong \mathbb{Z} / 2$ （Klein bottle）

Fiber Sequence

Fiber Sequence

－Recall $M T \xi=B^{-\xi}$ ．

Fiber Sequence

- Recall $M T \xi=B^{-\xi}$.

Proposition
Let $p: S(\rho) \rightarrow B$ be the projection. There is a (co)fiber sequence of spectra

$$
S(\rho)^{p^{*} \xi} \longrightarrow B^{-\xi} \xrightarrow{\mathrm{sm}_{\rho}} B^{-\xi+\rho} .
$$

Fiber Sequence

- Recall $M T \xi=B^{-\xi}$.

Proposition
Let $p: S(\rho) \rightarrow B$ be the projection. There is a (co)fiber sequence of spectra

$$
S(\rho)^{\rho^{*} \xi} \longrightarrow B^{-\xi} \xrightarrow{\mathrm{sm}_{\rho}} B^{-\xi+\rho} .
$$

- Idea: The Smith map sm_{ρ} is a map of spectra that comes from taking the zero section of ρ.

Fiber Sequence

- Recall $M T \xi=B^{-\xi}$.

Proposition
Let $p: S(\rho) \rightarrow B$ be the projection. There is a (co)fiber sequence of spectra

$$
S(\rho)^{p^{*} \xi} \longrightarrow B^{-\xi} \xrightarrow{\mathrm{sm}_{\rho}} B^{-\xi+\rho} .
$$

- Idea: The Smith map sm_{ρ} is a map of spectra that comes from taking the zero section of ρ.
- Note: sm_{ρ} induces $\operatorname{Def}_{\rho}$

Fiber Sequence

- Recall $M T \xi=B^{-\xi}$.

Proposition
Let $p: S(\rho) \rightarrow B$ be the projection. There is a (co)fiber sequence of spectra

$$
S(\rho)^{\rho^{*} \xi} \longrightarrow B^{-\xi} \xrightarrow{\mathrm{sm}_{\rho}} B^{-\xi+\rho} .
$$

- Idea: The Smith map sm_{ρ} is a map of spectra that comes from taking the zero section of ρ.
- Note: sm_{ρ} induces $\operatorname{Def}_{\rho}$
- A cofiber sequence of spaces is like a quotient:

$$
S(\rho)_{+} \rightarrow D(\rho)_{+} \rightarrow S^{\rho}=D(\rho) / S(\rho)
$$

Fiber Sequence

- Recall $M T \xi=B^{-\xi}$.

Proposition

Let $p: S(\rho) \rightarrow B$ be the projection. There is a (co)fiber sequence of spectra

$$
S(\rho)^{\rho^{*} \xi} \longrightarrow B^{-\xi} \xrightarrow{\mathrm{sm}_{\rho}} B^{-\xi+\rho} .
$$

- Idea: The Smith map sm_{ρ} is a map of spectra that comes from taking the zero section of ρ.
- Note: sm_{ρ} induces $\operatorname{Def}_{\rho}$
- A cofiber sequence of spaces is like a quotient:

$$
S(\rho)_{+} \rightarrow D(\rho)_{+} \rightarrow S^{\rho}=D(\rho) / S(\rho)
$$

Fiber Sequence-Examples

- Recall $M T \xi=B^{-\xi}$.

Proposition

Let $p: S(\rho) \rightarrow B$ be the projection. There is a (co)fiber sequence of spectra

$$
S(\rho)^{\rho^{\xi} \xi} \longrightarrow B^{-\xi} \xrightarrow{s m_{\rho}} B^{-\xi+\rho} .
$$

Examples

Fiber Sequence-Examples

- Recall $M T \xi=B^{-\xi}$.

Proposition

Let $p: S(\rho) \rightarrow B$ be the projection. There is a (co)fiber sequence of spectra

$$
S(\rho)^{\rho^{*} \xi} \longrightarrow B^{-\xi} \xrightarrow{\mathrm{sm}_{\rho}} B^{-\xi+\rho} .
$$

Examples

- MTSpin $\rightarrow M T \mathrm{Pin}^{+} \xrightarrow{\mathrm{sm}_{q}} \Sigma M T(\operatorname{Spin} \times \mathbb{Z} / 2)$

Fiber Sequence-Examples

- Recall $M T \xi=B^{-\xi}$.

Proposition

Let $p: S(\rho) \rightarrow B$ be the projection. There is a (co)fiber sequence of spectra

$$
S(\rho)^{{ }^{\circ} \xi} \longrightarrow B^{-\xi} \xrightarrow{\text { sm}} B^{-\xi+\rho} .
$$

Examples

- $M T$ Spin $\rightarrow M T \mathrm{Pin}^{+} \xrightarrow{\mathrm{sm}_{q}} \Sigma M T(\operatorname{Spin} \times \mathbb{Z} / 2)$
- MTSpin \rightarrow MTSpin $\wedge B U(1) \xrightarrow{\mathrm{sm}_{\sim}} \Sigma^{2} M T \operatorname{Spin}^{c}$

Fiber Sequence-Examples

- Recall $M T \xi=B^{-\xi}$.

Proposition

Let $p: S(\rho) \rightarrow B$ be the projection. There is a (co)fiber sequence of spectra

$$
S(\rho)^{\rho^{*} \xi} \longrightarrow B^{-\xi} \xrightarrow{\mathrm{sm}_{\rho}} B^{-\xi+\rho} .
$$

Examples

- $M T$ Spin $\rightarrow M T \mathrm{Pin}^{+} \xrightarrow{\mathrm{sm}_{q}} \Sigma M T(\operatorname{Spin} \times \mathbb{Z} / 2)$
- MTSpin \rightarrow MTSpin $\wedge B U(1) \xrightarrow{\mathrm{sm}_{\gamma}} \Sigma^{2} M T$ Spin c
- MTSpin $\wedge \Sigma_{+}^{\infty-1} \mathbb{R} P^{2} \rightarrow M T \mathrm{Pin}^{-} \xrightarrow{\mathrm{sm}_{2}} \Sigma^{2} M T \mathrm{Pin}^{+}[\mathrm{KT90}]$

Review：SBLES as Induced by a Map of Spectra

$M T \operatorname{Spin} \wedge B G$

Review: SBLES as Induced by a Map of Spectra

- Recall: Anomalies are classified by $\Omega_{\xi}^{D+1}=I_{\mathbb{Z}}^{D+2}(M T \xi)$
$M T \operatorname{Spin} \wedge B G$
 $M T$ Spin $\wedge S(\rho)^{p^{*} \xi}$

Review: SBLES as Induced by a Map of Spectra

- Recall: Anomalies are classified by $\Omega_{\xi}^{D+1}=I_{\mathbb{Z}}^{D+2}(M T \xi)$
- Idea: Fiber sequence of spectra $\stackrel{\text { take cohomology }}{\rightsquigarrow}$ long exact sequence
$M T \operatorname{Spin} \wedge B G$
 $M T \operatorname{Spin} \wedge S(\rho)^{p^{*} \xi}$

Part II：Math and Applications

（1）How to mathematically derive the SBLES
（2）How to apply it
（1）Computing Def $_{\rho}$ to perform anomaly matching
（2）Computing anomaly groups

Defect Anomaly Matching Maps－Example

Defect Anomaly Matching Maps-Example

- Question: How do we compute defect anomaly matching maps? When are they injective/surjective? ([HKT20b] Thm. 4.2)

Defect Anomaly Matching Maps-Example

- Question: How do we compute defect anomaly matching maps? When are they injective/surjective? ([HKT20b] Thm. 4.2)
- Example: Symmetry breaking for fermions with $\mathbb{Z} / 2$-symmetry

$$
\operatorname{Def}_{\sigma}: \Omega_{\mathrm{Spin} \times \mathbb{Z} / 2}^{D} \longrightarrow \Omega_{\mathrm{Pin}^{+}}^{D+1}
$$

Defect Anomaly Matching Maps-Example

- Question: How do we compute defect anomaly matching maps? When are they injective/surjective? ([HKT20b] Thm. 4.2)
- Example: Symmetry breaking for fermions with $\mathbb{Z} / 2$-symmetry

$$
\operatorname{Def}_{\sigma}: \Omega_{\operatorname{Spin} \times \mathbb{Z} / 2}^{D} \longrightarrow \Omega_{\operatorname{Pin}^{+}}^{D+1}
$$

- Knowing the groups is not enough to deduce the maps: e.g. for $(D=3)$

$$
\operatorname{Def}_{\sigma}: \mathbb{Z} / 8 \oplus \mathbb{Z} \longrightarrow \mathbb{Z} / 16
$$

Defect Anomaly Matching Maps-Example

- Question: How do we compute defect anomaly matching maps? When are they injective/surjective? ([HKT20b] Thm. 4.2)
- Example: Symmetry breaking for fermions with $\mathbb{Z} / 2$-symmetry

$$
\operatorname{Def}_{\sigma}: \Omega_{\mathrm{Spin} \times \mathbb{Z} / 2}^{D} \longrightarrow \Omega_{\mathrm{Pin}^{+}}^{D+1}
$$

- Knowing the groups is not enough to deduce the maps: e.g. for $(D=3)$

$$
\operatorname{Def}_{\sigma}: \mathbb{Z} / 8 \oplus \mathbb{Z} \longrightarrow \mathbb{Z} / 16
$$

- Turns out, this is $(a, b) \mapsto b-2 a$, where b tracks the gravitational anomaly of the defect theory and a tracks the internal $\mathbb{Z} / 2$ anomaly [HKT20b]

Spin $\times \mathbb{Z} / 2 \rightsquigarrow$ Pin $^{+}$Defect Matching Maps

	$\Omega_{\text {Spin } \times \mathbb{Z} / 2}^{*-1}$	$\Omega_{\text {Pin }^{+}}^{*}$
-1	0	0
0	$\mathbb{Z} \xrightarrow{?} \mathbb{Z} / 2$	
1	0	0
2	$(\mathbb{Z} / 2)^{2} \xrightarrow{?} \mathbb{Z} / 2$	
3	$(\mathbb{Z} / 2)^{2} \xrightarrow{?} \mathbb{Z} / 2$	
4	$\mathbb{Z} \oplus \mathbb{Z} / 8 \xrightarrow{?} \mathbb{Z} / 16$	

Application 1: Computing Anomaly Matching

Spin $\times \mathbb{Z} / 2 \rightsquigarrow$ Pin $^{+}$SBLES

	$\Omega_{\text {Spin } \times \mathbb{Z} / 2}^{*-1}$	$\Omega_{\text {Pin }^{+}}^{*}$	$\Omega_{\text {Spin }}^{*}$
-1	0	0	\mathbb{Z}
0	$\mathbb{Z}_{\mathbb{Z}} \longrightarrow \mathbb{Z} / 2$	0	
1	0	0	$\mathbb{Z} / 2$
2	$(\mathbb{Z} / 2)^{2} \longrightarrow \mathbb{Z} / 2$	$\mathbb{Z} / 2$	
3	$(\mathbb{Z} / 2)^{2} \longrightarrow \mathbb{Z} / 2$	\mathbb{Z}	
4	$\mathbb{Z} \oplus \mathbb{Z} / 8 \longrightarrow \mathbb{Z} / 16$	0	

Part II: Math and Applications

(1) How to mathematically derive the SBLES
(2) How to apply it
(1) Computing Def $_{\rho}$ to perform anomaly matching
(2) Computing anomaly groups

LES for Anomaly Group Computations

LES for Anomaly Group Computations

- Long exact sequences can aid in anomaly group computations (solving extension problems)

LES for Anomaly Group Computations

- Long exact sequences can aid in anomaly group computations (solving extension problems)
- Recall: Smith maps sm_{ρ} are dual to defect maps $\operatorname{Def}_{\rho}$

LES for Anomaly Group Computations

- Long exact sequences can aid in anomaly group computations (solving extension problems)
- Recall: Smith maps sm_{ρ} are dual to defect maps $\operatorname{Def}_{\rho}$
- Bordism groups are dual to anomaly groups

LES for Anomaly Group Computations

- Long exact sequences can aid in anomaly group computations (solving extension problems)
- Recall: Smith maps sm_{ρ} are dual to defect maps $\operatorname{Def}_{\rho}$
- Bordism groups are dual to anomaly groups
- Example: σ-twisted bordism of $\mathbb{R} P^{2}$

LES for Anomaly Group Computations

- Long exact sequences can aid in anomaly group computations (solving extension problems)
- Recall: Smith maps sm_{ρ} are dual to defect maps $\operatorname{Def}_{\rho}$
- Bordism groups are dual to anomaly groups
- Example: σ-twisted bordism of $\mathbb{R} P^{2}$
- Other examples: [Deb+23] studying the Swampland Cobordism Conjecture

Pin ${ }^{ \pm}$Long Exact Sequence in Bordism

Pin ${ }^{ \pm}$Long Exact Sequence in Bordism

- Consider $\rho=2 \sigma$ and fermionic theories with internal time reversal [KT90]:

$$
\operatorname{sm}_{2 \sigma}: \Omega_{d}^{\mathrm{Pin}^{-}} \longrightarrow \Omega_{d-2}^{\mathrm{Pin}^{+}} .
$$

Pin ${ }^{ \pm}$Long Exact Sequence in Bordism

- Consider $\rho=2 \sigma$ and fermionic theories with internal time reversal [KT90]:

$$
\operatorname{sm}_{2 \sigma}: \Omega_{d}^{\mathrm{Pin}^{-}} \longrightarrow \Omega_{d-2}^{\mathrm{Pin}^{+}} .
$$

- The fiber sequence inducing this is

$$
M T \operatorname{Spin} \wedge \Sigma^{-1} \mathbb{R} P^{2} \longrightarrow M T \mathrm{Pin}^{+} \xrightarrow{\mathrm{sm}_{2} \rho} \Sigma^{2} M T \mathrm{Pin}^{-}
$$

Pin ${ }^{ \pm}$Long Exact Sequence in Bordism

- Consider $\rho=2 \sigma$ and fermionic theories with internal time reversal [KT90]:

$$
\operatorname{sm}_{2 \sigma}: \Omega_{d}^{\mathrm{Pin}^{-}} \longrightarrow \Omega_{d-2}^{\mathrm{Pin}^{+}} .
$$

- The fiber sequence inducing this is

$$
M T \operatorname{Spin} \wedge \Sigma^{-1} \mathbb{R} P^{2} \longrightarrow M T \mathrm{Pin}^{+} \xrightarrow{\mathrm{sm}_{2} \rho} \Sigma^{2} M T \mathrm{Pin}^{-}
$$

- To fill in the LES, we need to compute

$$
\pi_{*}\left(M T \operatorname{Spin} \wedge \Sigma^{-1} \mathbb{R} P^{2}\right) \cong \widetilde{\Omega}_{*+1}^{\text {Spin }}\left(\mathbb{R} P^{2}\right) \cong \Omega_{*}^{\text {Spin }}\left(\mathbb{R} P^{1}, \sigma\right)
$$

Pin ${ }^{ \pm}$Long Exact Sequence in Bordism-[KT90] Computation

Pin ${ }^{ \pm}$Long Exact Sequence in Bordism-[KT90] Computation

- Kirby-Taylor observed [KT90] that the degree-two map

$$
\mathbb{S} \xrightarrow{\cdot 2} \mathbb{S} \longrightarrow \Sigma_{+}^{\infty-1} \mathbb{R} P^{2}
$$

induces $\cdot 2$ on spin bordism (dual to anomaly groups):

$$
\Omega_{*}^{\text {Spin }} \xrightarrow{\cdot 2} \Omega_{*}^{\text {Spin }} \longrightarrow \Omega_{*}^{\text {Spin }}\left(\mathbb{R} P^{1}, \sigma\right) .
$$

LES Partially Determining $\Omega_{*}^{\mathrm{Spin}}\left(\mathbb{R} P^{1}, \sigma\right)$

$*$	$\Omega_{*}^{\text {Spin }}$	$\Omega_{*}^{\text {Spin }}$	$\Omega_{*}^{\text {Spin }}\left(\mathbb{R} P^{1}, \sigma\right)$
5	0	0	
4	\mathbb{Z}	\mathbb{Z}	
3	0	0	
2	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	
1	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	
0	\mathbb{Z}	\mathbb{Z}	

LES Partially Determining $\Omega_{*}^{\text {Spin }}\left(\mathbb{R} P^{1}, \sigma\right)$

Resolving the Extension Question with the Smith LES

$*$	$\Omega_{*}^{\text {Spin }}\left(\mathbb{R} P^{1}, \sigma\right)$	$\Omega_{*}^{\text {Pin }^{-}}$
6	$\mathbb{Z} / 16$	$\Omega_{*-2}^{\text {Pin }^{+}}$
5	0	$\mathbb{Z} / 16$
4	$\mathbb{Z} / 2$	
3	0	$\mathbb{Z} / 2$
2	0	0
1	$\mathbb{Z} / 8$	$\mathbb{Z} / 2$
0	$\mathbb{Z} / 2$	0

Resolving the Extension Question with the Smith LES

$*$	$\Omega_{*}^{\text {Sin }}\left(\mathbb{R} P^{1}, \sigma\right)$	$\Omega_{*}^{\text {Pin }^{-}}$	$\Omega_{*-2}^{\text {Pin }^{+}}$
6	0	$\mathbb{Z} / 16 \longrightarrow \mathbb{Z} / 16$	
5	0	0	$\mathbb{Z} / 2$
4	$\mathbb{Z}_{2} / 2$	0	$\mathbb{Z} / 2$
3	$\mathbb{Z}^{2} / 2$	0	0
2	$\mathbb{Z} / 4 \longrightarrow \mathbb{Z} / 8 \longrightarrow \mathbb{Z} / 2$	0	
1	$\mathbb{Z} / 2 \longrightarrow \mathbb{Z} / 2$	0	

[Optional:] Twisted Tangential Structures and Shearing

Definition

Let $V \rightarrow X$ be a virtual bundle. An (X, V)-twisted spin structure on a vector bundle $E \rightarrow M$ is

- a map $f: M \rightarrow X$
- a spin structure on $E \oplus f^{*} V$
- Manifolds with (X, V)-twisted spin structures live in $\pi_{*}\left(M T \operatorname{Spin} \wedge X^{V-r}\right)$.

Examples

- Pin^{+}-structures $\leftrightarrow(B \mathbb{Z} / 2, \sigma)$-twisted spin structures
- check $w_{2}(E)=0 \Longleftrightarrow E \oplus 3 \operatorname{Det}(E)$ is spin
- MTPin ${ }^{+} \simeq M T \operatorname{Spin} \wedge(B \mathbb{Z} / 2)^{3 \sigma-3}$
- Spin c-structures $\leftrightarrow(B U(1), \gamma)$-twisted spin structures
- $M T \operatorname{Spin}^{c} \simeq M T \operatorname{Spin} \wedge B U(1)^{\gamma-1}$

Thanks for coming!

Examples of Periodic Families

Smith homomorphisms often occur in periodic families:

- 1-periodic family ([CF64]):

$$
\Omega_{d}^{O \times \mathbb{Z} / 2} \xrightarrow{\mathrm{sm}_{G}} \Omega_{d-1}^{O \times \mathbb{Z} / 2} \xrightarrow{\mathrm{sm}_{G}} \Omega_{d-2}^{O \times \mathbb{Z} / 2} \longrightarrow \ldots
$$

- 2-periodic family ([KT90; Sto88]):

$$
\Omega_{d}^{\text {Spin }^{\mathrm{sm}_{\mathcal{W}}}} \Omega_{d-2}^{\text {Spin }^{c} \mathrm{sm}_{\mathcal{Z}}} \Omega_{d-4}^{\text {Spin }^{\mathrm{sm}_{\mathcal{W}}}} \Omega_{d-6}^{\text {Spin }^{c}} \longrightarrow \ldots
$$

- 4-periodic family ([HKT20b; BC18; Sto88; KT90; Pet68]):

$$
\Omega_{d}^{\mathrm{Spin} \times \mathbb{Z} / 2} \xrightarrow{\mathrm{sm}_{q}} \Omega_{d-1}^{\mathrm{Pin}^{-}} \xrightarrow{\mathrm{sm}_{\mathscr{C}}} \Omega_{d-2}^{\mathrm{Spin}_{\mathbb{Z}} / 2 \mathbb{Z} / 4} \xrightarrow{\mathrm{sm}_{\mathscr{G}}} \Omega_{d-3}^{\mathrm{Pin}^{+}} \xrightarrow{\mathrm{sm}_{G}} \Omega_{d-4}^{\mathrm{Spin} \times \mathbb{Z} / 2} \longrightarrow \ldots
$$

Untwisting

Idea: Let ρ be the k-dim'l twisting datum.

- periodic Smith families (with period n) occur when $n \rho$ is appropriately oriented.
- in that case, the spectrum untwists:

$$
M T H \wedge X^{n \rho} \simeq M T H \wedge \Sigma^{k n} X
$$

The Spin Case

There is an isomorphism of MTSpin-modules

$$
M T \operatorname{Spin} \wedge X^{n \rho} \simeq M T \operatorname{Spin} \wedge \Sigma^{n k} X
$$

if and only if $n \rho$ has a spin structure.

- The order of the image of $\rho \in[X, B O]$ under the homomorphism $[X, B O] \rightarrow[X, B O / B$ Spin $]$ determines periodicity

Untwisting

Idea: When $n \rho$ is appropriately oriented, the spectrum untwists:

$$
M T H \wedge X^{n \rho} \simeq M T H \wedge \Sigma^{k n} X
$$

Examples

- $n=1$: $X=B \mathbb{Z} / 2$; no orientation condition for σ
- $M T O \wedge(B \mathbb{Z} / 2)_{+}^{\sigma} \simeq M T O \wedge \Sigma(B \mathbb{Z} / 2)_{+}$
- $n=2: X=B U(1) ; 2 \gamma$ is spin
- check: for any complex vector bundle E, E is oriented, and $2 E$ is spin
- MTSpin $\wedge B U(1)^{2 \gamma} \simeq M T \operatorname{Spin} \wedge \Sigma^{4} B U(1)$
- $n=4: X=B \mathbb{Z} / 2 ; 4 \sigma$ is spin
- check: for any real bundle $E, 2 E$ is oriented, and $4 E$ is spin
- MTSpin $\wedge(B \mathbb{Z} / 2)_{+}^{4 \sigma} \simeq M T \operatorname{Spin} \wedge \Sigma^{4} B \mathbb{Z} / 2$.

References I

[1] A. Kapustin, "Symmetry protected topological phases, anomalies, and cobordisms: Beyond group cohomology,", 2014, https://arxiv.org/abs/1403.1467. arXiv: 1403.1467 [cond-mat.str-el]
[2] A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang, "Fermionic symmetry protected topological phases and cobordisms," J. High Energy Phys., no. 12, 052, front matter+20pp, 2015, https://arxiv.org/abs/1406.7329, ISSN: 1126-6708. DOI: 10.1007/jhep12(2015) 052.
[3] D. S. Freed and M. J. Hopkins, "Reflection positivity and invertible topological phases," Geometry \& Topology, vol. 25, no. 3, pp. 1165-1330, 2021, https://arxiv.org/abs/1604.06527. DOI: $10.2140 / \mathrm{gt} .2021 .25 .1165$. [Online]. Available: https://doi.org/10.2140\%2Fgt.2021.25.1165.
[4] R. Thorngren and D. V. Else, "Gauging spatial symmetries and the classification of topological crystalline phases," Physical Review X, vol. 8, no. 1, Mar. 2018, https://arxiv.org/abs/1612.00846. DOI: 10.1103/physrevx.8.011040. [Online]. Available: https://doi.org/10.1103/physrevx.8.011040.
[5] Z. Komargodski, A. Sharon, R. Thorngren, and X. Zhou, "Comments on abelian Higgs models and persistent order," SciPost Physics, vol. 6, no. 1, Jan. 2019, https://arxiv.org/abs/1705.04786. DOI:
10.21468/scipostphys.6.1.003. [Online]. Available:
http://dx.doi.org/10.21468/SciPostPhys.6.1.003.
[6] R. Thorngren, "Topological terms and phases of sigma models,", 2017, https://arxiv.org/abs/1710.02545. DOI: 10.48550/ARXIV.1710.02545. [Online]. Available: https://arxiv.org/abs/1710.02545.
[7] C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, "Anomalies in the space of coupling constants and their dynamical applications I," SciPost Phys., vol. 8, no. 1, Paper No. 001, 57, 2020, https://arxiv.org/abs/1905.09315.
[8] A. Kapustin and L. Spodyneiko, "Higher-dimensional generalizations of Berry curvature," Physical Review B, vol. 101, no. 23, Jun. 2020, https://arxiv.org/abs/2001.03454. DOI:
10.1103/physrevb.101.235130. [Online]. Available:
https://doi.org/10.1103/physrevb.101.235130.
[9] P.-S. Hsin, A. Kapustin, and R. Thorngren, "Berry phase in quantum field theory: Diabolical points and boundary phenomena," Physical Review B, vol. 102, no. 24, Dec. 2020,
https://arxiv.org/abs/2004.10758. DOI: 10.1103/physrevb.102.245113. [Online]. Available: https://doi.org/10.1103/physrevb.102.245113.
[10] X. Wen et al., "Flow of (higher) berry curvature and bulk-boundary correspondence in parametrized quantum systems,", 2021, https://arxiv.org/abs/2112.07748. DOI: 10.48550/ARXIV.2112.07748. [Online]. Available: https://arxiv.org/abs/2112.07748.

References III

[11] E. Witten, "Fermion path integrals and topological phases," Reviews of Modern Physics, vol. 88, no. 3, Jul. 2016, https://arxiv.org/abs/1508.04715. DOI: 10.1103/revmodphys.88.035001. [Online]. Available: https://doi.org/10.1103/revmodphys.88.035001.
[12] I. Hason, Z. Komargodski, and R. Thorngren, "Anomaly matching in the symmetry broken phase: Domain walls, CPT, and the Smith isomorphism," SciPost Physics, vol. 8, no. 4, Apr. 2020, https://arxiv.org/abs/1910.14039, ISSN: 2542-4653. DOI: 10.21468/scipostphys.8.4.062. [Online]. Available: http://dx.doi.org/10.21468/SciPostPhys.8.4.062.
[13] C. G. Callan Jr and J. A. Harvey, "Anomalies and fermion zero modes on strings and domain walls," Nuclear Physics B, vol. 250, no. 1-4, pp. 427-436, 1985.
[14] C. Callias, "Axial anomalies and index theorems on open spaces," Communications in Mathematical Physics, vol. 62, no. 3, pp. 213-234, 1978.
[15] R. Bott and R. Seeley, "Some remarks on the paper of Callias," Communications in Mathematical Physics, vol. 62, no. 3, pp. 235-245, 1978.
[16] D. Thouless, "Quantization of particle transport," Physical Review B, vol. 27, no. 10, p. 6083, 1983.

References IV

[17] R. C. Kirby and L. R. Taylor, "A calculation of Pin+ bordism groups," Commentarii Mathematici Helvetici, vol. 65, no. 1, pp. 434-447, Dec. 1990, ISSN: 1420-8946. DoI: 10.1007/BF02566617. [Online]. Available: https://doi.org/10.1007/BF02566617.
[18] A. Debray, M. Dierigl, J. J. Heckman, and M. Montero, The Chronicles of IIBordia: Dualities, Bordisms, and the Swampland, en, arXiv:2302.00007 [hep-th], Jan. 2023. [Online]. Available: http://arxiv.org/abs/2302.00007 (visited on 11/05/2023).
[19] P. E. Conner and E. E. Floyd, Differentiable periodic maps (Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33). Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964, pp. vii+148.
[20] S. Stolz, "Exotic structures on 4-manifolds detected by spectral invariants," Invent. Math., vol. 94, no. 1, pp. 147-162, 1988, ISSN: 0020-9910. DOI: 10.1007/BF01394348. [Online]. Available: https://doi.org/10.1007/BF01394348.
[21] A. Beaudry and J. A. Campbell, "A guide for computing stable homotopy groups," in Topology and quantum theory in interaction, ser. Contemp. Math. Vol. 718, https://arxiv.org/abs/1801.07530, Amer. Math. Soc., Providence, RI, 2018, pp. 89-136. Doi: 10.1090/conm/718/14476.
[22] F. P. Peterson, Lectures on Cobordism Theory (Lectures in Mathematics). Kinokuniya Book Store Co., Ltd., 1968.

[^0]: ${ }^{1}$ There is a twisting of the G action by ρ, we may revisit this in the math section

[^1]: ${ }^{1}$ There is a twisting of the G action by ρ, we may revisit this in the math section

[^2]: ${ }^{1}$ There is a twisting of the G action by ρ, we may revisit this in the math section

[^3]: ${ }^{2}$ Anomaly polynomials are $D+2$ dimensional characteristic classes whose Chern-Simons form is the anomaly.

[^4]: ${ }^{2}$ Anomaly polynomials are $D+2$ dimensional characteristic classes whose Chern-Simons form is the anomaly.

