A Long Exact Sequence in Symmetry Breaking order parameter constraints, defect anomaly-matching, and higher Berry phases

Cameron Krulewski (MIT) and Yu Leon Liu (Harvard)

Joint with Arun Debray, Sanath Devalapurkar, Natalia Pacheco-Tallaj, and Ryan Thorngren

arXiv: 2309.16749

November 7, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Outline

Physics of SBLESs

Background on Anomalies

• Symmetry Breaking Long Exact Sequence

- Residual Anomaly Map
- Defect Anomaly Map
- Index Map

2 Math and Applications

- Deriving the SBLES
- Application 1: Computing Anomaly Matching
- Application 2: Computing Anomaly Groups
- Bonus: Periodic Families

End Goal: Symmetry Breaking Long Exact Sequence

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Consider a *D*-dim'l theory *Z* with symmetry *G*. What does its 't Hooft anomaly β represent?

• β is the obstruction to gauging the G symmetry.

Background on Anomalies

't Hooft Anomalies

- β is the obstruction to gauging the *G* symmetry.
- β is the obstruction to gauge-invariantly coupling Z to G-gauge fields.

't Hooft Anomalies

- β is the obstruction to gauging the *G* symmetry.
- β is the obstruction to gauge-invariantly coupling Z to G-gauge fields.
- β is the obstruction for Z to be symmetrically nondegenerately gapped; that is, to symmetrically deforming Z to have a nondegenerate gapped ground state.

- β is the obstruction to gauging the G symmetry.
- β is the obstruction to gauge-invariantly coupling Z to G-gauge fields.
- β is the obstruction for Z to be symmetrically nondegenerately gapped; that is, to symmetrically deforming Z to have a nondegenerate gapped ground state.
- Bulk-boundary: β is a D + 1-dim'l SPT and Z is a boundary theory of β .

't Hooft Anomalies

- β is the obstruction to gauging the *G* symmetry.
- β is the obstruction to gauge-invariantly coupling Z to G-gauge fields.
- β is the obstruction for Z to be symmetrically nondegenerately gapped; that is, to symmetrically deforming Z to have a nondegenerate gapped ground state.
- Bulk-boundary: β is a D + 1-dim'l SPT and Z is a boundary theory of β .
- Mathematical classification: the anomaly β ∈ Ω^{D+1}_G lives in a cohomology class (more on this in the math section) [Kap14; Kap+15; FH21].

Families of Anomalies

Background on Anomalies

Families of Anomalies

Anomalies can also appear in families [TE18; Kom+19; Tho17; Cór+20; KS20; HKT20a; Wen+21].

Suppose Z[φ] depends on a parameter φ ∈ M. Then we can couple Z to a background field φ(x). The anomaly β is the obstruction for the partition function Z[φ(x)] to be consistently defined for all φ. If it is anomalous, the partition function is a section of a non-trivial line bundle.

Families of Anomalies

- Suppose Z[φ] depends on a parameter φ ∈ M. Then we can couple Z to a background field φ(x). The anomaly β is the obstruction for the partition function Z[φ(x)] to be consistently defined for all φ. If it is anomalous, the partition function is a section of a non-trivial line bundle.
- The family anomaly β is an obstruction to deforming Z[φ] such that Z[φ] is nondegeneratedly gapped for all values of φ ∈ M.

Families of Anomalies

- Suppose Z[φ] depends on a parameter φ ∈ M. Then we can couple Z to a background field φ(x). The anomaly β is the obstruction for the partition function Z[φ(x)] to be consistently defined for all φ. If it is anomalous, the partition function is a section of a non-trivial line bundle.
- The family anomaly β is an obstruction to deforming Z[φ] such that Z[φ] is nondegeneratedly gapped for all values of φ ∈ M.
- Note that G can act on M, in which case we want to equivariantly deform Z.

Families of Anomalies

- Suppose Z[φ] depends on a parameter φ ∈ M. Then we can couple Z to a background field φ(x). The anomaly β is the obstruction for the partition function Z[φ(x)] to be consistently defined for all φ. If it is anomalous, the partition function is a section of a non-trivial line bundle.
- The family anomaly β is an obstruction to deforming Z[φ] such that Z[φ] is nondegeneratedly gapped for all values of φ ∈ M.
- Note that G can act on M, in which case we want to equivariantly deform Z.
- Mathematical classification: $\beta \in \Omega^{D+1}_G(M)$.

Symmetry Breaking Long Exact Sequence

Motivation: ρ -gappability

• Consider a *D*-dim'l theory *Z* with *G* symmetry and anomaly $\beta \neq 0 \in \Omega_G^{D+1}$. In the absence of gravitational anomalies we expect that we can gap *Z* by breaking *G*.

Motivation: ρ -gappability

- Consider a *D*-dim'l theory *Z* with *G* symmetry and anomaly $\beta \neq 0 \in \Omega_G^{D+1}$. In the absence of gravitational anomalies we expect that we can gap *Z* by breaking *G*.
- Question: Let ρ be a k-dim'l representation of G. Can we gap the theory using a symmetry breaking parameter φ transforming in the representation ρ?

Motivation: ρ -gappability

- Consider a *D*-dim'l theory *Z* with *G* symmetry and anomaly $\beta \neq 0 \in \Omega_G^{D+1}$. In the absence of gravitational anomalies we expect that we can gap *Z* by breaking *G*.
- Question: Let ρ be a k-dim'l representation of G. Can we gap the theory using a symmetry breaking parameter φ transforming in the representation ρ?

Definition

A theory is ρ -gappable if there are order parameters $(\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_k)$, transforming in ρ under G, such that $H_{(c_1,...,c_n)} = H_0 + \sum_j c_j \int d^D x \mathcal{O}_j(x)$ has a gapped, nondegenerate ground state for large enough radius $R = \sum_j |c_j|^2$.

Motivation: ρ -gappability

- Consider a *D*-dim'l theory *Z* with *G* symmetry and anomaly $\beta \neq 0 \in \Omega_G^{D+1}$. In the absence of gravitational anomalies we expect that we can gap *Z* by breaking *G*.
- Question: Let ρ be a k-dim'l representation of G. Can we gap the theory using a symmetry breaking parameter φ transforming in the representation ρ?

Definition

A theory is ρ -gappable if there are order parameters $(\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_k)$, transforming in ρ under G, such that $H_{(c_1,...,c_n)} = H_0 + \sum_j c_j \int d^D x \mathcal{O}_j(x)$ has a gapped, nondegenerate ground state for large enough radius $R = \sum_j |c_j|^2$.

• e.g.: Consider a 3 + 1D Dirac fermion ψ with anomalous $G = U(1)_L$ symmetry. It is ρ -gappable for $\rho = \underline{1}$, given by the Dirac mass terms $(\mathcal{O}_1 = \overline{\psi}\psi, \mathcal{O}_2 = i\overline{\psi}\gamma^5\psi)$.

Symmetry Breaking Long Exact Sequence

ρ -gappability and Residual Anomalies

• If ρ is the trivial representation, then Z is ρ -gappable if it is symmetrically gappable, equivalently, if the anomaly $\beta = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Symmetry Breaking Long Exact Sequence

ρ -gappability and Residual Anomalies

- If ρ is the trivial representation, then Z is ρ -gappable if it is symmetrically gappable, equivalently, if the anomaly $\beta = 0$.
- Question: Do we have an anomaly interpretation of ρ -gappability?

Symmetry Breaking Long Exact Sequence

ρ -gappability and Residual Anomalies

- If ρ is the trivial representation, then Z is ρ -gappable if it is symmetrically gappable, equivalently, if the anomaly $\beta = 0$.
- Question: Do we have an anomaly interpretation of ρ -gappability?
- View Z as a theory trivially coupled to φ ∈ M = S(ρ), to ρ-gap the theory means to (equivariantly) gap this family of theories over the sphere S(ρ).

Symmetry Breaking Long Exact Sequence

ρ -gappability and Residual Anomalies

- If ρ is the trivial representation, then Z is ρ -gappable if it is symmetrically gappable, equivalently, if the anomaly $\beta = 0$.
- Question: Do we have an anomaly interpretation of ρ -gappability?
- View Z as a theory trivially coupled to φ ∈ M = S(ρ), to ρ-gap the theory means to (equivariantly) gap this family of theories over the sphere S(ρ).
- On anomalies, there is a residual anomaly map:

$$\operatorname{Res}_{\rho} \colon \Omega_{G}^{D+1} \to \Omega_{G}^{D+1}(S(\rho)).$$

ρ -gappability and Residual Anomalies

- If ρ is the trivial representation, then Z is ρ -gappable if it is symmetrically gappable, equivalently, if the anomaly $\beta = 0$.
- Question: Do we have an anomaly interpretation of ρ -gappability?
- View Z as a theory trivially coupled to φ ∈ M = S(ρ), to ρ-gap the theory means to (equivariantly) gap this family of theories over the sphere S(ρ).
- On anomalies, there is a residual anomaly map:

$$\operatorname{Res}_{\rho} \colon \Omega_{G}^{D+1} \to \Omega_{G}^{D+1}(S(\rho)).$$

• $\operatorname{Res}_{\rho}(\beta)$ is the obstruction to gapping Z over $S(\rho)$:

Z is ρ -gappable if and only if $\operatorname{Res}_{\rho}(\beta) = 0$.

Example: 2 + 1D Majorana Fermion

• Let's do an example where the theory is not ρ -gappable.

Symmetry Breaking Long Exact Sequence

Example: 2 + 1D Majorana Fermion

- Let's do an example where the theory is not ρ -gappable.
- Consider a 2 + 1D Majorana fermion ψ with time reversal symmetry T.

Symmetry Breaking Long Exact Sequence

Example: 2 + 1D Majorana Fermion

- Let's do an example where the theory is not ρ -gappable.
- $\bullet\,$ Consider a 2 $+\,$ 1D Majorana fermion ψ with time reversal symmetry ${\cal T}.$
- Take ρ_0 be the sign representation. Then the theory is ρ_0 -gappable via the *T*-odd mass term $\mathcal{O} = \bar{\psi}\psi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Symmetry Breaking Long Exact Sequence

Example: 2 + 1D Majorana Fermion

- Let's do an example where the theory is not ρ -gappable.
- Consider a 2 + 1D Majorana fermion ψ with time reversal symmetry T.
- Take ρ_0 be the sign representation. Then the theory is ρ_0 -gappable via the *T*-odd mass term $\mathcal{O} = \bar{\psi}\psi$.
- Take $\rho = \rho_0 \oplus \rho_0$. Is the theory ρ -gappable? That is, can we find two T-odd operators \mathcal{O}_1 , \mathcal{O}_2 such that

$$H_0 + r\sin(\theta)\mathcal{O}_1 + r\cos(\theta)\mathcal{O}_2$$

is gapped for any θ and large enough r?

Example: 2 + 1D Majorana Fermion

- Let's do an example where the theory is not ρ -gappable.
- Consider a 2 + 1D Majorana fermion ψ with time reversal symmetry T.
- Take ρ_0 be the sign representation. Then the theory is ρ_0 -gappable via the *T*-odd mass term $\mathcal{O} = \bar{\psi}\psi$.
- Take $\rho = \rho_0 \oplus \rho_0$. Is the theory ρ -gappable? That is, can we find two T-odd operators \mathcal{O}_1 , \mathcal{O}_2 such that

$$H_0 + r\sin(\theta)\mathcal{O}_1 + r\cos(\theta)\mathcal{O}_2$$

is gapped for any θ and large enough r?

• We claim that the answer is no! There are no operators $\mathcal{O}_1, \mathcal{O}_2$ that can make this happen!

Math and Applications

Symmetry Breaking Long Exact Sequence

Example: 2 + 1D Majorana Fermion II

• Trivial example:
$$\mathcal{O}_1 = \mathcal{O}_2 = \bar{\psi}\psi$$
.

Example: 2 + 1D Majorana Fermion II

- Trivial example: $\mathcal{O}_1 = \mathcal{O}_2 = \bar{\psi}\psi$.
- Clearly this is not gapped at $\theta = \pm 3\pi/4$ where m = 0. Going from m < 0 to m > 0 pumps a p + ip superconductor. Going from m > 0 to m < 0 pumps a p ip.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Symmetry Breaking Long Exact Sequence

Example: 2 + 1D Majorana Fermion II

- Trivial example: $\mathcal{O}_1 = \mathcal{O}_2 = \bar{\psi}\psi$.
- Clearly this is not gapped at $\theta = \pm 3\pi/4$ where m = 0. Going from m < 0 to m > 0 pumps a p + ip superconductor. Going from m > 0 to m < 0 pumps a p ip.
- Claim: The number of $p \pm ip$ pumped mod 2 across half an arc is an invariant.

Symmetry Breaking Long Exact Sequence

Anomaly Analysis

• Let's check this on anomalies. The Majorana fermion's anomaly is $1 \in \Omega^4_{\operatorname{Pin}^+} = \mathbb{Z}_{16}$ [Wit16]. $\Omega^4_{\operatorname{Pin}^+}(S^1) = \mathbb{Z}_2$ counts the number of $p \pm ip \mod 2$ across the arc.

Anomaly Analysis

- Let's check this on anomalies. The Majorana fermion's anomaly is $1 \in \Omega^4_{\operatorname{Pin}^+} = \mathbb{Z}_{16}$ [Wit16]. $\Omega^4_{\operatorname{Pin}^+}(S^1) = \mathbb{Z}_2$ counts the number of $p \pm ip \mod 2$ across the arc.
- Our example above fixes the residual anomaly map

$$\operatorname{Res}_{
ho} \colon \Omega^4_{\operatorname{Pin}^+} \longrightarrow \Omega^4_{\operatorname{Pin}^+}(S^1)$$
 $\mathbb{Z}_{16} \longrightarrow \mathbb{Z}_2$ $eta = 1 \longmapsto 1 \neq 0$

Anomaly Analysis

- Let's check this on anomalies. The Majorana fermion's anomaly is $1 \in \Omega^4_{\operatorname{Pin}^+} = \mathbb{Z}_{16}$ [Wit16]. $\Omega^4_{\operatorname{Pin}^+}(S^1) = \mathbb{Z}_2$ counts the number of $p \pm ip \mod 2$ across the arc.
- Our example above fixes the residual anomaly map

$$egin{aligned} \operatorname{Res}_{
ho}\colon \Omega^4_{\operatorname{Pin}^+} & \longrightarrow \Omega^4_{\operatorname{Pin}^+}(S^1) \ && \mathbb{Z}_{16} & \longrightarrow \mathbb{Z}_2 \ && eta = 1 & \longmapsto & 1
eq 0 \end{aligned}$$

• Consequence I: For any choices of *T*-odd $\mathcal{O}_1, \mathcal{O}_2$, the number of $p \pm ip$'s pumped across half an arc is odd.

Anomaly Analysis

- Let's check this on anomalies. The Majorana fermion's anomaly is $1 \in \Omega^4_{\operatorname{Pin}^+} = \mathbb{Z}_{16}$ [Wit16]. $\Omega^4_{\operatorname{Pin}^+}(S^1) = \mathbb{Z}_2$ counts the number of $p \pm ip \mod 2$ across the arc.
- Our example above fixes the residual anomaly map

$$egin{aligned} \operatorname{Res}_{
ho}\colon \Omega^4_{\operatorname{Pin}^+} & \longrightarrow \Omega^4_{\operatorname{Pin}^+}(S^1) \ && \mathbb{Z}_{16} & \longrightarrow \mathbb{Z}_2 \ && eta = 1 & \longmapsto & 1
eq 0 \end{aligned}$$

- Consequence I: For any choices of *T*-odd $\mathcal{O}_1, \mathcal{O}_2$, the number of $p \pm ip$'s pumped across half an arc is odd.
- Consequence II: The 2 + 1D Majorana fermion is not ρ -gappable.

$$\Omega^{D+1}_{G} \xrightarrow[\operatorname{Res}_{
ho}]{\operatorname{Res}_{
ho}} \Omega^{D+1}_{G}(S(
ho))$$

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>
Symmetry Breaking Long Exact Sequence

Topological Defects

Question: Assume that Z is ρ-gappable (Res_ρ(β) = 0). What can the anomaly β tell us?

Topological Defects

- Question: Assume that Z is ρ-gappable (Res_ρ(β) = 0). What can the anomaly β tell us?
- This question was answered in [HKT20b] (in the case that $G = \mathbb{Z}_2$):

Topological Defects

- Question: Assume that Z is ρ-gappable (Res_ρ(β) = 0). What can the anomaly β tell us?
- This question was answered in [HKT20b] (in the case that $G = \mathbb{Z}_2$):
- Given a ρ-gapping, where the the order parameter is φ ∈ V_ρ, we can create a defect system by letting φ vary in space with the form:

$$\phi = (v_1 x_1 + \ldots + v_k x_k) / \sqrt{\sum_i x_i^2}$$

for large $R = \sqrt{\sum_i x_i^2}$, where the v_i form an orthonormal basis of $V_{
ho}$.

・ロト・「四ト・山田ト・山田ト・山下

Topological Defects

- Question: Assume that Z is ρ-gappable (Res_ρ(β) = 0). What can the anomaly β tell us?
- This question was answered in [HKT20b] (in the case that $G = \mathbb{Z}_2$):
- Given a ρ-gapping, where the order parameter is φ ∈ V_ρ, we can create a defect system by letting φ vary in space with the form:

$$\phi = (v_1 x_1 + \ldots + v_k x_k) / \sqrt{\sum_i x_i^2}$$

for large $R = \sqrt{\sum_i x_i^2}$, where the v_i form an orthonormal basis of V_{ρ} .

• The defect is localized at $x_1 = \cdots = x_k = 0$. Since the system is ρ -gapped, excitations are localized at the defect, which we view as a (D - k)-dim'l system.

Topological Defects

- Question: Assume that Z is ρ-gappable (Res_ρ(β) = 0). What can the anomaly β tell us?
- This question was answered in [HKT20b] (in the case that $G = \mathbb{Z}_2$):
- Given a ρ-gapping, where the order parameter is φ ∈ V_ρ, we can create a defect system by letting φ vary in space with the form:

$$\phi = (v_1 x_1 + ... + v_k x_k) / \sqrt{\sum_i x_i^2}$$

for large $R = \sqrt{\sum_i x_i^2}$, where the v_i form an orthonormal basis of V_{ρ} .

- The defect is localized at $x_1 = \cdots = x_k = 0$. Since the system is ρ -gapped, excitations are localized at the defect, which we view as a (D k)-dim'l system.
- Examples: domain walls (k = 1), vortices (k = 2), and hedgehogs (k = 3).

Defect Anomaly Matching

• Since $\phi = 0 \in V_{\rho}$ is a fixed point under G, the defect theory Z_D has G_{ρ} symmetry ¹ and anomaly $\alpha \in \Omega_{G_{\rho}}^{D+1-k}$.

¹There is a twisting of the G action by ρ , we may revisit this in the math section $\mathbb{P} \to \mathbb{R} \to \mathbb{R} \to \mathbb{R}$

Defect Anomaly Matching

- Since $\phi = 0 \in V_{\rho}$ is a fixed point under G, the defect theory Z_D has G_{ρ} symmetry ¹ and anomaly $\alpha \in \Omega_{G_{\rho}}^{D+1-k}$.
- There is a defect anomaly map

$$\operatorname{Def}_{\rho} \colon \Omega^{D+1-k}_{G_{\rho}} \to \Omega^{D+1}_{G}.$$

¹There is a twisting of the G action by ρ , we may revisit this in the math section $\mathbb{P} \to \mathbb{R} \to \mathbb{R} \to \mathbb{R}$

Defect Anomaly Matching

- Since $\phi = 0 \in V_{\rho}$ is a fixed point under *G*, the defect theory Z_D has G_{ρ} symmetry ¹ and anomaly $\alpha \in \Omega_{G_{\rho}}^{D+1-k}$.
- There is a defect anomaly map

$$\operatorname{Def}_{\rho} \colon \Omega^{D+1-k}_{G_{\rho}} \to \Omega^{D+1}_{G}.$$

• The anomaly matching condition [HKT20b]:

$$\operatorname{Def}_{\rho}(\alpha) = \beta.$$

¹There is a twisting of the G action by ρ , we may revisit this in the math section $\mathbb{P} \to \mathbb{R} \to \mathbb{R} \to \mathbb{R}$

Example: 3 + 1D Dirac Fermions

• Consider a 3 + 1D Dirac fermion ψ with $G = U(1)_L$. Its anomaly polynomial is

$$\beta = \frac{1}{6}(c_1)^3 - \frac{1}{24}c_1p_1(TX),$$

where p_1 is the first Pontryagin number and X is the 6D test manifold with a principal $U(1)_L$ bundle P.²

²Anomaly polynomials are D + 2 dimensional characteristic classes whose Chern-Simons form is the anomaly.

Example: 3 + 1D Dirac Fermions

• Consider a 3 + 1D Dirac fermion ψ with $G = U(1)_L$. Its anomaly polynomial is

$$\beta = \frac{1}{6}(c_1)^3 - \frac{1}{24}c_1p_1(TX),$$

where p_1 is the first Pontryagin number and X is the 6D test manifold with a principal $U(1)_L$ bundle P.²

• Let $\rho = \underline{1}$. The Dirac mass gives a ρ -gapping and the defect is the axion string [CH85]. A 1 + 1D chiral fermion is localized on the axion string with fractional charge $\frac{1}{2}$.

²Anomaly polynomials are D + 2 dimensional characteristic classes whose Chern-Simons form is the anomaly.

Example: 3 + 1D Dirac Fermions

• Consider a 3 + 1D Dirac fermion ψ with $G = U(1)_L$. Its anomaly polynomial is

$$\beta = \frac{1}{6}(c_1)^3 - \frac{1}{24}c_1p_1(TX),$$

where p_1 is the first Pontryagin number and X is the 6D test manifold with a principal $U(1)_L$ bundle P.²

- Let ρ = <u>1</u>. The Dirac mass gives a ρ-gapping and the defect is the axion string [CH85]. A 1 + 1D chiral fermion is localized on the axion string with fractional charge <u>1</u>/2.
- The defect anomaly polynomial is

$$\alpha = \frac{1}{8}(c_1)^2 - \frac{1}{24}p_1(TY), \tag{1}$$

where Y is the zero section of a generic section $s \colon X \to E_{\rho} = P \times_{U(1)_L} V_{\rho}$.

²Anomaly polynomials are D + 2 dimensional characteristic classes whose Chern-Simons form is the anomaly.

Symmetry Breaking Long Exact Sequence

Example: 3 + 1D Dirac Fermions II

• To compute $Def_{\rho}(\alpha)$, we have

$$egin{aligned} & \operatorname{Def}_{
ho}(lpha) = c_1 lpha \ &= rac{1}{8} (c_1)^3 - rac{1}{24} c_1 p_1(TY). \end{aligned}$$

Symmetry Breaking Long Exact Sequence

Example: 3 + 1D Dirac Fermions II

• To compute $Def_{\rho}(\alpha)$, we have

$$egin{aligned} &\mathrm{Def}_{
ho}(lpha) = c_1 lpha \ &= rac{1}{8} (c_1)^3 - rac{1}{24} c_1 p_1(TY). \end{aligned}$$

• To relate TY and TX, we use the following formula:

$$TX|_Y = TY \oplus E_\rho|_Y, \quad p_1(TX) = p_1(TY) + (c_1)^2.$$

Example: 3 + 1D Dirac Fermions II

• To compute $Def_{\rho}(\alpha)$, we have

$$egin{aligned} & \mathrm{Def}_{
ho}(lpha) = c_1 lpha \ & = rac{1}{8} (c_1)^3 - rac{1}{24} c_1 p_1(TY). \end{aligned}$$

• To relate TY and TX, we use the following formula:

$$TX|_Y=TY\oplus E_
ho|_Y, \quad p_1(TX)=p_1(TY)+(c_1)^2.$$

• Plugging in, we get

$$\mathrm{Def}_{\rho}(\alpha) = \frac{1}{6}(c_1)^3 - \frac{1}{24}c_1p_1(TX) = \beta.$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Symmetry Breaking Long Exact Sequence

Recap II

・ロト ・日 ・ モー・ モー・ ロー・ つくや

Symmetry Breaking Long Exact Sequence

Recap II

• This is *exact* at Ω_{G}^{D+1} ; i.e., $\operatorname{Res}_{\rho}(\beta) = 0$ if and only if there is an $\alpha \in \Omega_{G_{\rho}}^{D+1-k}$ such that $\beta = \operatorname{Def}_{\rho}(\alpha)$.

Symmetry Breaking Long Exact Sequence

Recap II

- This is *exact* at Ω_{G}^{D+1} ; i.e., $\operatorname{Res}_{\rho}(\beta) = 0$ if and only if there is an $\alpha \in \Omega_{G_{\rho}}^{D+1-k}$ such that $\beta = \operatorname{Def}_{\rho}(\alpha)$.
- β is the anomaly of the defect system created via the ρ -gapping.

Symmetry Breaking Long Exact Sequence

Ambiguity in Defect Anomaly Matching

• The defect anomaly determines the bulk. However, this map is not injective: there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory Z with $\beta = 0$ can have anomalous defects!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Symmetry Breaking Long Exact Sequence

Ambiguity in Defect Anomaly Matching

- The defect anomaly determines the bulk. However, this map is not injective: there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory Z with $\beta = 0$ can have anomalous defects!
- Question: What is the ambiguity in the defect anomaly map?

Symmetry Breaking Long Exact Sequence

Ambiguity in Defect Anomaly Matching

- The defect anomaly determines the bulk. However, this map is not injective: there is an ambiguity in the defect anomaly. In particular, an anomaly-free theory Z with $\beta = 0$ can have anomalous defects!
- Question: What is the ambiguity in the defect anomaly map?
- The defect comes from a ρ -gapping, which assigns a nondegenerate ground state to each point on the sphere $S(\rho)$. This invertible family is not typically free of *G*-anomalies, but it is when $\beta = 0$. Therefore the ρ -gapping defines a *D*-dim'l SPT class

 $\gamma \in \Omega^D_G(S(\rho)).$

D-1-dim'l Boundary Theory

• We can also construct a dynamical theory with anomaly γ :

D-1-dim'l Boundary Theory

- We can also construct a dynamical theory with anomaly γ :
- Recall our ρ -gapping Hamiltonian:

$$H_{(c_1,\ldots,c_n)} = H_0 + \sum_j c_j \int d^D x \mathcal{O}_j(x)$$

Since Z is anomaly-free, let's assume H_0 has a symmetric non-degenerate ground state. H_{c_1,\dots,c_k} is also gapped for large $R = \sum_j |c_j|^2$.

D-1-dim'l Boundary Theory

- We can also construct a dynamical theory with anomaly γ :
- Recall our ρ -gapping Hamiltonian:

$$H_{(c_1,\ldots,c_n)} = H_0 + \sum_j c_j \int d^D x \mathcal{O}_j(x)$$

Since Z is anomaly-free, let's assume H_0 has a symmetric non-degenerate ground state. H_{c_1,\dots,c_k} is also gapped for large $R = \sum_i |c_j|^2$.

• If γ describes a nontrivial SPT, then there is some point $(c_1, ..., c_n)$ with radius $r \leq R$ such that $H_{(c_1,...,c_n)}$ fails to be nondegenerately gapped.

・ロト (日下・日下・日下・日) うらつ

Symmetry Breaking Long Exact Sequence

D-1-dim'l Boundary Theory

- We can also construct a dynamical theory with anomaly $\gamma:$
- Recall our ρ -gapping Hamiltonian:

$$H_{(c_1,\ldots,c_n)} = H_0 + \sum_j c_j \int d^D x \mathcal{O}_j(x)$$

Since Z is anomaly-free, let's assume H_0 has a symmetric non-degenerate ground state. H_{c_1,\dots,c_k} is also gapped for large $R = \sum_j |c_j|^2$.

• If γ describes a nontrivial SPT, then there is some point $(c_1, ..., c_n)$ with radius $r \leq R$ such that $H_{(c_1,...,c_n)}$ fails to be nondegenerately gapped.

Symmetry Breaking Long Exact Sequence

Index Anomaly Matching

• The theory $H_{c_1,...,c_n}$ for $\sum_j |c_j|^2 = r$ is a D-1 dim'l theory with parameter space $S(\rho)$, whose family anomaly is $\gamma \in \Omega^D(S(\rho))$.

Symmetry Breaking Long Exact Sequence

Index Anomaly Matching

- The theory $H_{c_1,...,c_n}$ for $\sum_j |c_j|^2 = r$ is a D-1 dim'l theory with parameter space $S(\rho)$, whose family anomaly is $\gamma \in \Omega^D(S(\rho))$.
- The defect is created by shrinking the D-1 theory on $S(\rho)$ to a point.

Symmetry Breaking Long Exact Sequence

Index Anomaly Matching

- The theory $H_{c_1,...,c_n}$ for $\sum_j |c_j|^2 = r$ is a D-1 dim'l theory with parameter space $S(\rho)$, whose family anomaly is $\gamma \in \Omega^D(S(\rho))$.
- The defect is created by shrinking the D-1 theory on $S(\rho)$ to a point.
- On anomalies, this is the generalization of Callias index theorem [Cal78; BS78], which counts the fermion zero modes at the core of a mass defect.

Symmetry Breaking Long Exact Sequence

Index Anomaly Matching

- The theory $H_{c_1,...,c_n}$ for $\sum_j |c_j|^2 = r$ is a D-1 dim'l theory with parameter space $S(\rho)$, whose family anomaly is $\gamma \in \Omega^D(S(\rho))$.
- The defect is created by shrinking the D-1 theory on $S(\rho)$ to a point.
- On anomalies, this is the generalization of Callias index theorem [Cal78; BS78], which counts the fermion zero modes at the core of a mass defect.
- There is an index map

$$\operatorname{Ind}_{\rho} \colon \Omega^D_G(S(\rho)) \to \Omega^{D+1-k}_{G_{\rho}}.$$

Index Anomaly Matching

- The theory $H_{c_1,...,c_n}$ for $\sum_j |c_j|^2 = r$ is a D-1 dim'l theory with parameter space $S(\rho)$, whose family anomaly is $\gamma \in \Omega^D(S(\rho))$.
- The defect is created by shrinking the D-1 theory on $S(\rho)$ to a point.
- On anomalies, this is the generalization of Callias index theorem [Cal78; BS78], which counts the fermion zero modes at the core of a mass defect.
- There is an index map

$$\operatorname{Ind}_{\rho} \colon \Omega^{D}_{G}(S(\rho)) \to \Omega^{D+1-k}_{G_{\rho}}.$$

• Index anomaly matching:

$$\operatorname{Ind}_{\rho}(\gamma) = \beta.$$

Example: Thouless Pump

• Consider a 1 + 1D Dirac fermion ψ with anomaly-free $U(1)_V$. There is a symmetry preserving ($\rho = \mathbb{R}^2$) Dirac mass term

 $\cos(\phi)\bar{\psi}\psi + i\sin(\phi)\bar{\psi}\gamma^{c}\psi,$

 $\gamma^{c} = i\gamma^{0}\gamma^{1}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Symmetry Breaking Long Exact Sequence

Example: Thouless Pump

• Consider a 1 + 1D Dirac fermion ψ with anomaly-free $U(1)_V$. There is a symmetry preserving ($\rho = \mathbb{R}^2$) Dirac mass term

 $\cos(\phi)\bar{\psi}\psi + i\sin(\phi)\bar{\psi}\gamma^{c}\psi,$

 $\gamma^{c} = i\gamma^{0}\gamma^{1}.$

• This defines a non-trivial SPT $\gamma = A d\phi$.

Example: Thouless Pump

• Consider a 1 + 1D Dirac fermion ψ with anomaly-free $U(1)_V$. There is a symmetry preserving ($\rho = \mathbb{R}^2$) Dirac mass term

$$\cos(\phi)\bar{\psi}\psi + i\sin(\phi)\bar{\psi}\gamma^{c}\psi,$$

 $\gamma^{c} = i\gamma^{0}\gamma^{1}.$

- This defines a non-trivial SPT $\gamma = A d\phi$.
- Adding a mass term $ar{\psi}\psi$ so H_0 is gapped, we have

$$(x+1)\overline{\psi}\psi+iy\overline{\psi}\gamma^{c}\psi\subset H_{(x,y)}.$$

This family fails to be gapped at (x = -1, y = 0), where the fermion becomes massless.

Example: Thouless Pump

• Consider a 1 + 1D Dirac fermion ψ with anomaly-free $U(1)_V$. There is a symmetry preserving ($\rho = \mathbb{R}^2$) Dirac mass term

$$\cos(\phi)\bar{\psi}\psi + i\sin(\phi)\bar{\psi}\gamma^{c}\psi,$$

 $\gamma^{c}=i\gamma^{0}\gamma^{1}.$

- This defines a non-trivial SPT $\gamma = A d\phi$.
- $\bullet\,$ Adding a mass term $\bar\psi\psi$ so ${\it H}_{\rm 0}$ is gapped, we have

$$(x+1)\overline{\psi}\psi+iy\overline{\psi}\gamma^{c}\psi\subset H_{(x,y)}.$$

This family fails to be gapped at (x = -1, y = 0), where the fermion becomes massless.

 Viewing the S¹ parameter theory at r = 1 as the boundary of γ, we see that when we adiabatically vary the S¹ parameter φ, we pump a quantized charge to the boundary [Tho83].

Symmetry Breaking Long Exact Sequence

Example: Thouless Pump II

 The ρ-defect is the operator that creates a vortex in φ. It carries an unit charge under U(1), matching the Thouless pump.

Symmetry Breaking Long Exact Sequence

Example: Thouless Pump II

- The ρ-defect is the operator that creates a vortex in φ. It carries an unit charge under U(1), matching the Thouless pump.
- On anomalies:

$$\operatorname{Ind}_{\rho} \colon \Omega^2_{\operatorname{Spin}^c}(S^1) \overset{\simeq}{\longrightarrow} \Omega^1_{\operatorname{Spin}^c}$$

$$\mathbb{Z} \xrightarrow{=} \mathbb{Z}.$$

Example: Thouless Pump II

- The ρ-defect is the operator that creates a vortex in φ. It carries an unit charge under U(1), matching the Thouless pump.
- On anomalies:

$$\operatorname{Ind}_{\rho} \colon \Omega^2_{\operatorname{Spin}^c}(S^1) \xrightarrow{\simeq} \Omega^1_{\operatorname{Spin}^c}$$

$$\mathbb{Z} \longrightarrow \mathbb{Z}.$$

 The first group counts the charges pumped when we vary S¹ parameter φ; the latter computes the U(1) charge of the φ-vortex.
Symmetry Breaking Long Exact Sequence

Recap III

• We have a sequence of maps:

$$\Omega^D_G(S(\rho)) \xrightarrow{\operatorname{Ind}_\rho} \Omega^{D+1-k}_{G_\rho} \xrightarrow{\operatorname{Def}_\rho} \Omega^{D+1}_G \xrightarrow{\operatorname{Res}_\rho} \Omega^{D+1}_G(S(\rho))$$

Symmetry Breaking Long Exact Sequence

Recap III

• We have a sequence of maps:

$$\Omega^D_G(S(\rho)) \xrightarrow{\operatorname{Ind}_\rho} \Omega^{D+1-k}_{G_\rho} \xrightarrow{\operatorname{Def}_\rho} \Omega^{D+1}_G \xrightarrow{\operatorname{Res}_\rho} \Omega^{D+1}_G(S(\rho))$$

This is exact at Ω^{D+1-k}_{G_ρ}: Def_ρ(α) = 0 if and only if α = Ind_ρ(γ) for some γ ∈ Ω^D_G(S(ρ)).

Symmetry Breaking Long Exact Sequence

Recap III

• We have a sequence of maps:

$$\Omega^D_G(S(\rho)) \xrightarrow{\operatorname{Ind}_\rho} \Omega^{D+1-k}_{G_\rho} \xrightarrow{\operatorname{Def}_\rho} \Omega^{D+1}_G \xrightarrow{\operatorname{Res}_\rho} \Omega^{D+1}_G(S(\rho))$$

- This is exact at Ω^{D+1-k}_{G_ρ}: Def_ρ(α) = 0 if and only if α = Ind_ρ(γ) for some γ ∈ Ω^D_G(S(ρ)).
- Rolling over:

$$\Omega^D_G \xrightarrow{\operatorname{Res}_\rho} \Omega^D_G(S(\rho)) \xrightarrow{\operatorname{Ind}_\rho} \Omega^{D+1-k}_{G_\rho}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Symmetry Breaking Long Exact Sequence

Recap III

• We have a sequence of maps:

$$\Omega^D_G(S(\rho)) \xrightarrow{\operatorname{Ind}_\rho} \Omega^{D+1-k}_{G_\rho} \xrightarrow{\operatorname{Def}_\rho} \Omega^{D+1}_G \xrightarrow{\operatorname{Res}_\rho} \Omega^{D+1}_G(S(\rho))$$

- This is exact at $\Omega_{G_{\rho}}^{D+1-k}$: $\mathrm{Def}_{\rho}(\alpha) = 0$ if and only if $\alpha = \mathrm{Ind}_{\rho}(\gamma)$ for some $\gamma \in \Omega_{G}^{D}(S(\rho))$.
- Rolling over:

$$\Omega^D_G \xrightarrow{\operatorname{Res}_\rho} \Omega^D_G(S(\rho)) \xrightarrow{\operatorname{Ind}_\rho} \Omega^{D+1-k}_{G_\rho}$$

• This is exact at $\Omega^D_G(S(\rho))$.

Symmetry Breaking Long Exact Sequence

Completing the Circle

• We can infinitely continue this long exact sequence:

$$\cdots \Omega^D_G \xrightarrow{\operatorname{Res}_\rho} \Omega^D_G(S(\rho)) \xrightarrow{\operatorname{Ind}_\rho} \Omega^{D+1-k}_{G_\rho} \xrightarrow{\operatorname{Def}_\rho} \Omega^{D+1}_G \xrightarrow{\operatorname{Res}_\rho} \Omega^{D+1}_G(S(\rho)) \xrightarrow{\operatorname{Ind}_\rho} \Omega^{D+1-k}_{G_\rho} \cdots$$

Symmetry Breaking Long Exact Sequence

Completing the Circle

• We can infinitely continue this long exact sequence:

$$\cdots \Omega_{\mathcal{G}}^{D} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{\mathcal{G}}^{D}(\mathcal{S}(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{\mathcal{G}_{\rho}}^{D+1-k} \xrightarrow{\operatorname{Def}_{\rho}} \Omega_{\mathcal{G}}^{D+1} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{\mathcal{G}}^{D+1}(\mathcal{S}(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{\mathcal{G}_{\rho}}^{D+1-k} \cdots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

Symmetry Breaking Long Exact Sequence

Completing the Circle

• We can infinitely continue this long exact sequence:

$$\cdots \Omega_{G}^{D} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \xrightarrow{\operatorname{Def}_{\rho}} \Omega_{G}^{D+1} \xrightarrow{\operatorname{Res}_{\rho}} \Omega_{G}^{D+1}(S(\rho)) \xrightarrow{\operatorname{Ind}_{\rho}} \Omega_{G_{\rho}}^{D+1-k} \cdots$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - の々で

Part II: Math and Applications

- I How to mathematically derive the SBLES
- e How to apply it
 - **()** Computing Def_{ρ} to perform anomaly matching
 - Occupation Computing anomaly groups

Deriving the SBLES

Part II: Math and Applications

O How to mathematically derive the SBLES

- e How to apply it
 - $\bullet \quad \text{Computing } \mathrm{Def}_{\rho} \text{ to perform anomaly matching}$
 - Occupation Computing anomaly groups

Physics of SBLESs

Math and Applications ○○●○○○○○○○○○○○○○○○○○○○○○○○ References

Deriving the SBLES

SBLES as Induced by a Map of Spectra

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

SBLES as Induced by a Map of Spectra

• Specialize to fermions.

SBLES as Induced by a Map of Spectra

- Specialize to fermions.
- Idea: Fiber sequence of spectra

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

Example SBLES and Map of Spectra

Running example:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Example SBLES and Map of Spectra

Running example:

•
$$\Omega_{\text{Pin}^+}^{D+1} = \Omega_{\mathbb{Z}/2,f}^{D+1}$$
 fermions with internal time-reversal symmetry with $T^2 = (-1)^F$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 - 釣A⊘

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Deriving the SBLES

Example SBLES and Map of Spectra

Running example:

- $\Omega_{\text{Pin}^+}^{D+1} = \Omega_{\mathbb{Z}/2,f}^{D+1}$ fermions with internal time-reversal symmetry with $T^2 = (-1)^F$
- Symmetry-breaking order parameter: $ho = \sigma$, the sign representation of $\mathbb{Z}/2$

Example SBLES and Map of Spectra

Running example:

- $\Omega_{\text{Pin}^+}^{D+1} = \Omega_{\mathbb{Z}/2,f}^{D+1}$ fermions with internal time-reversal symmetry with $T^2 = (-1)^F$
- Symmetry-breaking order parameter: $\rho=\sigma,$ the sign representation of $\mathbb{Z}/2$
- $\Omega^{D}_{\text{Spin} \times \mathbb{Z}/2} = \Omega^{D}_{\mathbb{Z}/2^{\rho}, f}$: fermions with internal $\mathbb{Z}/2$ unitary symmetry $U^{2} = 1$.

Tangential Structures

A stable tangential structure is a map ξ: B → BO.
 A manifold X has ξ-structure if the classifying map f of TX has a lift to the space B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Tangential Structures

A stable tangential structure is a map ξ: B → BO.
 A manifold X has ξ-structure if the classifying map f of TX has a lift to the space B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Examples:

• B = BSO: bosonic theories

Tangential Structures

A stable tangential structure is a map ξ: B → BO.
 A manifold X has ξ-structure if the classifying map f of TX has a lift to the space B.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

- B = BSO: bosonic theories
- $B = B \text{Spin} \land BG$: fermionic theories with G-symmetry

Tangential Structures

A stable tangential structure is a map ξ: B → BO.
 A manifold X has ξ-structure if the classifying map f of TX has a lift to the space B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- B = BSO: bosonic theories
- $B = B \text{Spin} \land BG$: fermionic theories with G-symmetry
 - $B = B \text{Spin} \times B \mathbb{Z}/2$: fermionic with internal unitary symmetry $U^2 = 1$
 - $B = BPin^+$: fermionic with internal time reversal symmetry $T^2 = (-1)^F$

Tangential Structures

A stable tangential structure is a map ξ: B → BO.
 A manifold X has ξ-structure if the classifying map f of TX has a lift to the space B.

- B = BSO: bosonic theories
- $B = B \text{Spin} \land BG$: fermionic theories with G-symmetry
 - $B = B \text{Spin} \times B\mathbb{Z}/2$: fermionic with internal unitary symmetry $U^2 = 1$
 - $B = B P in^+$: fermionic with internal time reversal symmetry $T^2 = (-1)^F$
- $B = B \text{Spin} \times BU(1)$: fermionic with internal U(1) symmetry

Tangential Structures

A stable tangential structure is a map ξ: B → BO.
 A manifold X has ξ-structure if the classifying map f of TX has a lift to the space B.

- B = BSO: bosonic theories
- $B = B \text{Spin} \wedge BG$: fermionic theories with G-symmetry
 - $B = B {
 m Spin} imes B {\mathbb Z}/2$: fermionic with internal unitary symmetry $U^2 = 1$
 - $B = B P in^+$: fermionic with internal time reversal symmetry $T^2 = (-1)^F$
- $B = B \text{Spin} \times BU(1)$: fermionic with internal U(1) symmetry
- $B = B \text{Spin}^{c}$: complex fermionic with fractional charge

Madsen-Tillman Spectra and Anomalies

Fix a stable tangential structure ξ: B → BO (e.g. ξ: BPin⁺ → BO for fermions with T² = (-1)^F)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Deriving the SBLES

- Fix a stable tangential structure ξ: B → BO (e.g. ξ: BPin⁺ → BO for fermions with T² = (-1)^F)
- "Definition": The Madsen-Tillman spectrum MTξ is the Thom spectrum of the inverse of ξ, written B^{-ξ}. (e.g. MTPin⁺)

Deriving the SBLES

- Fix a stable tangential structure ξ: B → BO (e.g. ξ: BPin⁺ → BO for fermions with T² = (-1)^F)
- "Definition": The Madsen-Tillman spectrum MTξ is the Thom spectrum of the inverse of ξ, written B^{-ξ}. (e.g. MTPin⁺)
- Idea: The Madsen-Tillman spectrum $MT\xi$ is such that

Deriving the SBLES

- Fix a stable tangential structure ξ: B → BO (e.g. ξ: BPin⁺ → BO for fermions with T² = (-1)^F)
- "Definition": The Madsen-Tillman spectrum MTξ is the Thom spectrum of the inverse of ξ, written B^{-ξ}. (e.g. MTPin⁺)
- Idea: The Madsen-Tillman spectrum $MT\xi$ is such that

Ansatz ([FH21])

$$\begin{cases}
\text{anomaly groups} \\
\text{of } D\text{-dim'l theories} \\
\text{with symmetry } (B, \xi)
\end{cases} \cong I_{\mathbb{Z}}^{D+2}(MT\xi)$$

Madsen-Tillman Spectra and Anomalies

- Fix a stable tangential structure ξ: B → BO (e.g. ξ: BPin⁺ → BO for fermions with T² = (-1)^F)
- "Definition": The Madsen-Tillman spectrum MTξ is the Thom spectrum of the inverse of ξ, written B^{-ξ}. (e.g. MTPin⁺)
- Idea: The Madsen-Tillman spectrum $MT\xi$ is such that

Ansatz ([FH21])

$$\begin{cases}
\text{anomaly groups} \\
\text{of } D\text{-dim'l theories} \\
\text{with symmetry } (B, \xi)
\end{cases} \cong I_{\mathbb{Z}}^{D+2}(MT\xi)$$

• e.g. $MTPin^+$ is such that...

Madsen-Tillman Spectra and Anomalies

- Fix a stable tangential structure ξ: B → BO (e.g. ξ: BPin⁺ → BO for fermions with T² = (-1)^F)
- "Definition": The Madsen-Tillman spectrum MTξ is the Thom spectrum of the inverse of ξ, written B^{-ξ}. (e.g. MTPin⁺)
- Idea: The Madsen-Tillman spectrum $MT\xi$ is such that

Ansatz ([FH21])

$$\begin{cases}
\text{anomaly groups} \\
\text{of } D\text{-dim'l theories} \\
\text{with symmetry } (B, \xi)
\end{cases} \cong I_{\mathbb{Z}}^{D+2}(MT\xi)$$

• e.g. $MTPin^+$ is such that...

• $I_{\mathbb{Z}}^4(MT \operatorname{Pin}^+) \cong \mathbb{Z}/16$ (2 + 1D Majorana)

Madsen-Tillman Spectra and Anomalies

- Fix a stable tangential structure ξ: B → BO (e.g. ξ: BPin⁺ → BO for fermions with T² = (-1)^F)
- "Definition": The Madsen-Tillman spectrum MTξ is the Thom spectrum of the inverse of ξ, written B^{-ξ}. (e.g. MTPin⁺)
- Idea: The Madsen-Tillman spectrum $MT\xi$ is such that

Ansatz ([FH21])

$$\begin{cases}
\text{anomaly groups} \\
\text{of } D\text{-dim'l theories} \\
\text{with symmetry } (B, \xi)
\end{cases} \cong I_{\mathbb{Z}}^{D+2}(MT\xi)$$

Theorem (Pontrjagin-Thom)

$$\pi_d(MT\xi) \cong \Omega_d^{\xi} = \{\text{manifolds with } (B,\xi)\text{-structure}\}/\sim.$$

• e.g. MTPin⁺ is such that...

• $I_{\mathbb{Z}}^4(MT\operatorname{Pin}^+) \cong \mathbb{Z}/16$ (2 + 1D Majorana)

Madsen-Tillman Spectra and Anomalies

- Fix a stable tangential structure ξ: B → BO (e.g. ξ: BPin⁺ → BO for fermions with T² = (-1)^F)
- "Definition": The Madsen-Tillman spectrum MTξ is the Thom spectrum of the inverse of ξ, written B^{-ξ}. (e.g. MTPin⁺)
- Idea: The Madsen-Tillman spectrum $MT\xi$ is such that

Ansatz ([FH21])

$$\begin{cases}
\text{anomaly groups} \\
\text{of } D\text{-dim'l theories} \\
\text{with symmetry } (B,\xi)
\end{cases} \cong I_{\mathbb{Z}}^{D+2}(MT\xi)$$

Theorem (Pontrjagin-Thom)

$$\pi_d(MT\xi) \cong \Omega_d^{\xi} = \{\text{manifolds with } (B,\xi)\text{-structure}\}/\sim.$$

- e.g. MTPin⁺ is such that...
- $I_{\mathbb{Z}}^4(MT\operatorname{Pin}^+) \cong \mathbb{Z}/16$ (2 + 1D Majorana)
- $\pi_2(MTPin^+) \cong \Omega_2^{Pin^+} \cong \mathbb{Z}/2$ (Klein bottle)

Madsen-Tillman Spectra and Anomalies—Takeaway

- Fix a stable tangential structure ξ: B → BO (e.g. ξ: BPin⁺ → BO for fermions with T² = (-1)^F)
- "Definition": The Madsen-Tillman spectrum $MT\xi$ is the Thom spectrum of the inverse of ξ , written $B^{-\xi}$. (e.g. $MTPin^+$)
- Idea: The Madsen-Tillman spectrum $MT\xi$ is such that

Ansatz ([FH21])

$$\left\{ \begin{array}{l} \text{anomaly groups} \\ \text{for } D\text{-dim'l theories} \\ \text{with symmetry } (B,\xi) \end{array} \right\} \cong I_{\mathbb{Z}}^{D+2}(MT\xi) = \Omega_{\xi}^{D+1}$$

Theorem (Pontrjagin-Thom)

$$\pi_d(MT\xi) \cong \Omega_d^{\xi} = \{\text{manifolds with } (B,\xi)\text{-structure}\}/\sim.$$

• e.g. $MTPin^+$ is such that...

- $I_{\mathbb{Z}}^4(MT\operatorname{Pin}^+) \cong \mathbb{Z}/16$ (2+1D Majorana)
- $\pi_2(MTPin^+) \cong \Omega_2^{Pin^+} \cong \mathbb{Z}/2$ (Klein bottle)

```
・ロ・・聞・・ヨ・・ヨ・ うへぐ
```


◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Fiber Sequence

• Recall $MT\xi = B^{-\xi}$.

Fiber Sequence

• Recall $MT\xi = B^{-\xi}$.

Proposition

Let $p \colon S(\rho) \to B$ be the projection. There is a (co)fiber sequence of spectra

$$S(\rho)^{p^*\xi} \longrightarrow B^{-\xi} \xrightarrow{\operatorname{sm}_{\rho}} B^{-\xi+\rho}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Deriving the SBLES

Fiber Sequence

• Recall $MT\xi = B^{-\xi}$.

Proposition

Let $p\colon S(\rho) o B$ be the projection. There is a (co)fiber sequence of spectra

$$S(\rho)^{p^*\xi} \longrightarrow B^{-\xi} \xrightarrow{\operatorname{sm}_{\rho}} B^{-\xi+\rho}.$$

• Idea: The *Smith* map sm_{ρ} is a map of spectra that comes from taking the zero section of ρ .
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Deriving the SBLES

Fiber Sequence

• Recall $MT\xi = B^{-\xi}$.

Proposition

Let $p\colon S(
ho) o B$ be the projection. There is a (co)fiber sequence of spectra

$$S(\rho)^{p^*\xi} \longrightarrow B^{-\xi} \xrightarrow{\operatorname{sm}_{\rho}} B^{-\xi+\rho}.$$

- Idea: The *Smith* map sm_{ρ} is a map of spectra that comes from taking the zero section of ρ .
- Note: sm_{ρ} induces $\operatorname{Def}_{\rho}$

Fiber Sequence

• Recall $MT\xi = B^{-\xi}$.

Proposition

Let $p\colon S(
ho) o B$ be the projection. There is a (co)fiber sequence of spectra

$$S(\rho)^{p^*\xi} \longrightarrow B^{-\xi} \xrightarrow{\operatorname{sm}_{\rho}} B^{-\xi+\rho}.$$

- Idea: The *Smith* map sm_{ρ} is a map of spectra that comes from taking the zero section of ρ .
- Note: sm_{ρ} induces $\operatorname{Def}_{\rho}$
- A cofiber sequence of spaces is like a quotient:

$$S(\rho)_+ \rightarrow D(\rho)_+ \rightarrow S^{
ho} = D(\rho)/S(\rho)$$

Fiber Sequence

• Recall $MT\xi = B^{-\xi}$.

Proposition

Let $p\colon S(\rho) o B$ be the projection. There is a (co)fiber sequence of spectra

$$S(\rho)^{p^*\xi} \longrightarrow B^{-\xi} \xrightarrow{\mathrm{sm}_{\rho}} B^{-\xi+\rho}.$$

- Idea: The Smith map sm_{ρ} is a map of spectra that comes from taking the zero section of ρ .
- Note: sm_{ρ} induces $\operatorname{Def}_{\rho}$
- A cofiber sequence of spaces is like a quotient:

$$S(
ho)_+ o D(
ho)_+ o S^{
ho} = D(
ho)/S(
ho)$$

Fiber Sequence—Examples

• Recall
$$MT\xi = B^{-\xi}$$
.

Proposition

Let $p: S(\rho) \to B$ be the projection. There is a (co)fiber sequence of spectra

$$S(\rho)^{p^*\xi} \longrightarrow B^{-\xi} \xrightarrow{\operatorname{sm}_{\rho}} B^{-\xi+\rho}.$$

Examples

・ロト ・日・・日・・日・・ つくぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Deriving the SBLES

Fiber Sequence—Examples

• Recall
$$MT\xi = B^{-\xi}$$
.

Proposition

Let $p: S(\rho) \to B$ be the projection. There is a (co)fiber sequence of spectra

$$S(\rho)^{p^*\xi} \longrightarrow B^{-\xi} \xrightarrow{\mathrm{sm}_{\rho}} B^{-\xi+\rho}.$$

Examples

• MTSpin $\rightarrow MT$ Pin⁺ $\stackrel{\text{sm}_{\sigma}}{\longrightarrow} \Sigma MT$ (Spin $\times \mathbb{Z}/2$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Deriving the SBLES

Fiber Sequence—Examples

• Recall
$$MT\xi = B^{-\xi}$$
.

Proposition

Let $p: S(\rho) \to B$ be the projection. There is a (co)fiber sequence of spectra

$$S(\rho)^{p^*\xi} \longrightarrow B^{-\xi} \xrightarrow{\mathrm{sm}_{\rho}} B^{-\xi+\rho}.$$

Examples

- MTSpin $\rightarrow MT$ Pin⁺ $\stackrel{\text{sm}_{q}}{\longrightarrow} \Sigma MT$ (Spin $\times \mathbb{Z}/2$)
- MTSpin $\rightarrow MT$ Spin $\land BU(1) \xrightarrow{\text{sm}_{\gamma}} \Sigma^2 MT$ Spin^c

Fiber Sequence—Examples

• Recall
$$MT\xi = B^{-\xi}$$
.

Proposition

Let $p: S(\rho) \to B$ be the projection. There is a (co)fiber sequence of spectra

$$S(\rho)^{p^*\xi} \longrightarrow B^{-\xi} \xrightarrow{\mathrm{sm}_{\rho}} B^{-\xi+\rho}.$$

Examples

- MTSpin $\rightarrow MT$ Pin⁺ $\stackrel{\text{sm}_{q}}{\longrightarrow} \Sigma MT$ (Spin $\times \mathbb{Z}/2$)
- MTSpin $\rightarrow MT$ Spin $\land BU(1) \xrightarrow{\text{sm}_{\gamma}} \Sigma^2 MT$ Spin^c
- MTSpin $\wedge \Sigma^{\infty-1}_{+} \mathbb{R}P^2 \to MT$ Pin⁻ $\xrightarrow{\mathrm{sm}_{2g}} \Sigma^2 MT$ Pin⁺ [KT90]

Math and Applications

References

Deriving the SBLES

Review: SBLES as Induced by a Map of Spectra

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Review: SBLES as Induced by a Map of Spectra

• Recall: Anomalies are classified by
$$\Omega_{\xi}^{D+1} = I_{\mathbb{Z}}^{D+2}(MT\xi)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Review: SBLES as Induced by a Map of Spectra

- Recall: Anomalies are classified by $\Omega_{\xi}^{D+1} = I_{\mathbb{Z}}^{D+2}(MT\xi)$
- Idea: Fiber sequence of spectra $\xrightarrow{\text{take cohomology}}$ long exact sequence

Application 1: Computing Anomaly Matching

Part II: Math and Applications

- I How to mathematically derive the SBLES
- O How to apply it
 - Computing Def_{ρ} to perform anomaly matching
 - Occupation Computing anomaly groups

Math and Applications

References

Application 1: Computing Anomaly Matching

Defect Anomaly Matching Maps—Example

Application 1: Computing Anomaly Matching

Defect Anomaly Matching Maps—Example

• Question: How do we compute defect anomaly matching maps? When are they injective/surjective? ([HKT20b] Thm. 4.2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Application 1: Computing Anomaly Matching

Defect Anomaly Matching Maps—Example

- Question: How do we compute defect anomaly matching maps? When are they injective/surjective? ([HKT20b] Thm. 4.2)
- \bullet Example: Symmetry breaking for fermions with $\mathbb{Z}/2\text{-symmetry}$

$$\operatorname{Def}_{\sigma} \colon \Omega^{D}_{\operatorname{Spin} \times \mathbb{Z}/2} \longrightarrow \Omega^{D+1}_{\operatorname{Pin}^{+}}$$

Application 1: Computing Anomaly Matching

Defect Anomaly Matching Maps—Example

- Question: How do we compute defect anomaly matching maps? When are they injective/surjective? ([HKT20b] Thm. 4.2)
- \bullet Example: Symmetry breaking for fermions with $\mathbb{Z}/2\text{-symmetry}$

$$\operatorname{Def}_{\sigma} \colon \Omega^{D}_{\operatorname{Spin} \times \mathbb{Z}/2} \longrightarrow \Omega^{D+1}_{\operatorname{Pin}^{+}}$$

• Knowing the groups is not enough to deduce the maps: e.g. for (D = 3)

$$\operatorname{Def}_{\sigma} \colon \mathbb{Z}/8 \oplus \mathbb{Z} \longrightarrow \mathbb{Z}/16$$

Application 1: Computing Anomaly Matching

Defect Anomaly Matching Maps—Example

- Question: How do we compute defect anomaly matching maps? When are they injective/surjective? ([HKT20b] Thm. 4.2)
- \bullet Example: Symmetry breaking for fermions with $\mathbb{Z}/2\text{-symmetry}$

$$\operatorname{Def}_{\sigma} \colon \Omega^{D}_{\operatorname{Spin} \times \mathbb{Z}/2} \longrightarrow \Omega^{D+1}_{\operatorname{Pin}^{+}}$$

• Knowing the groups is not enough to deduce the maps: e.g. for (D = 3)

$$\operatorname{Def}_{\sigma} \colon \mathbb{Z}/8 \oplus \mathbb{Z} \longrightarrow \mathbb{Z}/16$$

Turns out, this is (a, b) → b - 2a, where b tracks the gravitational anomaly of the defect theory and a tracks the internal Z/2 anomaly [HKT20b]

Application 1: Computing Anomaly Matching

$\operatorname{Spin} \times \mathbb{Z}/2 \rightsquigarrow \operatorname{Pin}^+$ Defect Matching Maps

	$\Omega^{*-1}_{{ m Spin} imes {\mathbb Z}/2}$	$\Omega^*_{\mathrm{Pin}^+}$
-1	0	0
0	ℤ?	$ ightarrow \mathbb{Z}/2$
1	0	0
2	$(\mathbb{Z}/2)^2$	$ ightarrow \mathbb{Z}/2$
3	$(\mathbb{Z}/2)^2 \stackrel{?}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!$	$ ightarrow \mathbb{Z}/2$
4	$\mathbb{Z}\oplus\mathbb{Z}/8$ —?	$\rightarrow \mathbb{Z}/16$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

Math and Applications

References

Application 1: Computing Anomaly Matching

$$\operatorname{Spin} \times \mathbb{Z}/2 \rightsquigarrow \operatorname{Pin}^+ \operatorname{SBLES}$$

Application 2: Computing Anomaly Groups

Part II: Math and Applications

- O How to mathematically derive the SBLES
- e How to apply it
 - **()** Computing Def_{ρ} to perform anomaly matching
 - Occupation Computing anomaly groups

Application 2: Computing Anomaly Groups

Application 2: Computing Anomaly Groups

LES for Anomaly Group Computations

• Long exact sequences can aid in anomaly group computations (solving extension problems)

Application 2: Computing Anomaly Groups

- Long exact sequences can aid in anomaly group computations (solving extension problems)
- Recall: Smith maps sm_{ρ} are dual to defect maps Def_{ρ}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Application 2: Computing Anomaly Groups

- Long exact sequences can aid in anomaly group computations (solving extension problems)
- Recall: Smith maps sm_{ρ} are dual to defect maps Def_{ρ}
- Bordism groups are dual to anomaly groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Application 2: Computing Anomaly Groups

- Long exact sequences can aid in anomaly group computations (solving extension problems)
- Recall: Smith maps sm_{ρ} are dual to defect maps Def_{ρ}
- Bordism groups are dual to anomaly groups
- Example: σ -twisted bordism of $\mathbb{R}P^2$

Application 2: Computing Anomaly Groups

- Long exact sequences can aid in anomaly group computations (solving extension problems)
- Recall: Smith maps sm_{ρ} are dual to defect maps Def_{ρ}
- Bordism groups are dual to anomaly groups
- Example: σ -twisted bordism of $\mathbb{R}P^2$
- Other examples: [Deb+23] studying the Swampland Cobordism Conjecture

Math and Applications

Application 2: Computing Anomaly Groups

Pin^{\pm} Long Exact Sequence in Bordism

Application 2: Computing Anomaly Groups

Pin[±] Long Exact Sequence in Bordism

• Consider $\rho = 2\sigma$ and fermionic theories with internal time reversal [KT90]:

$$\operatorname{sm}_{2\sigma} \colon \Omega_d^{\operatorname{Pin}^-} \longrightarrow \Omega_{d-2}^{\operatorname{Pin}^+}.$$

Application 2: Computing Anomaly Groups

Pin[±] Long Exact Sequence in Bordism

• Consider $\rho = 2\sigma$ and fermionic theories with internal time reversal [KT90]:

$$\operatorname{sm}_{2\sigma} \colon \Omega_d^{\operatorname{Pin}^-} \longrightarrow \Omega_{d-2}^{\operatorname{Pin}^+}.$$

• The fiber sequence inducing this is

$$MT$$
Spin $\wedge \Sigma^{-1} \mathbb{R}P^2 \longrightarrow MT$ Pin⁺ $\stackrel{sm_{2g}}{\longrightarrow} \Sigma^2 MT$ Pin⁻

Application 2: Computing Anomaly Groups

Pin[±] Long Exact Sequence in Bordism

• Consider $\rho = 2\sigma$ and fermionic theories with internal time reversal [KT90]:

$$\operatorname{sm}_{2\sigma} \colon \Omega_d^{\operatorname{Pin}^-} \longrightarrow \Omega_{d-2}^{\operatorname{Pin}^+}.$$

• The fiber sequence inducing this is

$$MT$$
Spin $\wedge \Sigma^{-1} \mathbb{R}P^2 \longrightarrow MT$ Pin⁺ $\stackrel{\text{sm}_{2\sigma}}{\longrightarrow} \Sigma^2 MT$ Pin⁻

• To fill in the LES, we need to compute

$$\pi_*(MT{\operatorname{Spin}}\wedge\Sigma^{-1}{\mathbb{R}}P^2)\cong\widetilde\Omega^{\operatorname{Spin}}_{*+1}({\mathbb{R}}P^2)\cong\Omega^{\operatorname{Spin}}_*({\mathbb{R}}P^1,\sigma)$$

・ロト・「「「・」」・ 「」・ 「」・ (」・

Math and Applications

Application 2: Computing Anomaly Groups

Pin[±] Long Exact Sequence in Bordism—[KT90] Computation

Application 2: Computing Anomaly Groups

Pin[±] Long Exact Sequence in Bordism—[KT90] Computation

• Kirby-Taylor observed [KT90] that the degree-two map

$$\mathbb{S} \stackrel{\cdot 2}{\longrightarrow} \mathbb{S} \longrightarrow \Sigma^{\infty-1}_+ \mathbb{R} P^2$$

induces ·2 on spin bordism (dual to anomaly groups):

$$\Omega^{\mathrm{Spin}}_* \stackrel{\cdot 2}{\longrightarrow} \Omega^{\mathrm{Spin}}_* \longrightarrow \Omega^{\mathrm{Spin}}_* (\mathbb{R}P^1, \sigma).$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Math and Applications

Application 2: Computing Anomaly Groups

LES Partially Determining $\Omega^{\mathrm{Spin}}_*(\mathbb{R}P^1,\sigma)$

*	$\Omega^{ m Spin}_*$	$\Omega^{ m Spin}_*$	$\Omega^{\mathrm{Spin}}_{*}(\mathbb{R}P^{1},\sigma)$
5	0	0	
4	\mathbb{Z}	\mathbb{Z}	
3	0	0	
2	$\mathbb{Z}/2$	$\mathbb{Z}/2$	
1	$\mathbb{Z}/2$	$\mathbb{Z}/2$	
0	\mathbb{Z}	\mathbb{Z}	

Math and Applications

Application 2: Computing Anomaly Groups

LES Partially Determining $\Omega^{\text{Spin}}_*(\mathbb{R}P^1,\sigma)$

Math and Applications

References

Application 2: Computing Anomaly Groups

Resolving the Extension Question with the Smith LES

*	$\Omega^{\mathrm{Spin}}_*(\mathbb{R}P^1,\sigma)$	$\Omega^{\mathrm{Pin}^-}_*$	$\Omega_{*-2}^{\mathrm{Pin}^+}$		
6		$\mathbb{Z}/16$	$\mathbb{Z}/16$		
5		0	$\mathbb{Z}/2$		
4		0	$\mathbb{Z}/2$		
3		0	0		
2		$\mathbb{Z}/8$	$\mathbb{Z}/2$		
1		$\mathbb{Z}/2$	0		
0		$\mathbb{Z}/2$	0		
			A (1) A (2) A	★ E ► ★ E ► E	୬ଏଙ

Math and Applications

References

Application 2: Computing Anomaly Groups

Resolving the Extension Question with the Smith LES

*	$\Omega^{\mathrm{Spin}}_*(\mathbb{R}P^1,\sigma)$	$\Omega^{\mathrm{Pin}^-}_*$	$\Omega_{*-2}^{\mathrm{Pin}^+}$		
6	0	$\mathbb{Z}/16$ —	$\longrightarrow \mathbb{Z}/16$		
5	0	0	$\mathbb{Z}/2$, ,	
4	∽ _{ℤ/2}	0	$\mathbb{Z}/2$	·	
3	$\leq \mathbb{Z}/2$	0	0		
2	ℤ/4 ——	$\longrightarrow \mathbb{Z}/8$ —	$\longrightarrow \mathbb{Z}/2$		
1	ℤ/2 ——	$\longrightarrow \mathbb{Z}/2$	0		
0	ℤ/2 ——	$\longrightarrow \mathbb{Z}/2$	0		5
				그 나 가 지나가가 가 든 가 가 든 가	= 7940

Application 2: Computing Anomaly Groups

[Optional:] Twisted Tangential Structures and Shearing

Definition

Let $V \to X$ be a virtual bundle. An (X, V)-twisted spin structure on a vector bundle $E \to M$ is

- a map $f: M \to X$
- a spin structure on $E \oplus f^*V$
- Manifolds with (X, V)-twisted spin structures live in $\pi_*(MT \operatorname{Spin} \wedge X^{V-r})$.

Examples

- Pin^+ -structures \leftrightarrow $(B\mathbb{Z}/2,\sigma)$ -twisted spin structures
 - check $w_2(E) = 0 \iff E \oplus 3\text{Det}(E)$ is spin
 - $MT \operatorname{Pin}^+ \simeq MT \operatorname{Spin} \wedge (B\mathbb{Z}/2)^{3\sigma-3}$
- Spin^{c} -structures \leftrightarrow ($BU(1), \gamma$)-twisted spin structures
 - MTSpin^c $\simeq MT$ Spin $\land BU(1)^{\gamma-1}$
Application 2: Computing Anomaly Groups

Thanks for coming!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Examples of Periodic Families

Smith homomorphisms often occur in periodic families:

• 1-periodic family ([CF64]):

$$\Omega_d^{O \times \mathbb{Z}/2} \xrightarrow{\mathrm{sm}_{\mathfrak{q}}} \Omega_{d-1}^{O \times \mathbb{Z}/2} \xrightarrow{\mathrm{sm}_{\mathfrak{q}}} \Omega_{d-2}^{O \times \mathbb{Z}/2} \longrightarrow \dots$$

• 2-periodic family ([KT90; Sto88]):

$$\Omega^{\mathrm{Spin}}_{\boldsymbol{d}} \xrightarrow{\mathrm{sm}_{\boldsymbol{\gamma}}} \Omega^{\mathrm{Spin}^{\boldsymbol{c}}}_{\boldsymbol{d}-2} \xrightarrow{\mathrm{sm}_{\boldsymbol{\gamma}}} \Omega^{\mathrm{Spin}}_{\boldsymbol{d}-4} \xrightarrow{\mathrm{sm}_{\boldsymbol{\gamma}}} \Omega^{\mathrm{Spin}^{\boldsymbol{c}}}_{\boldsymbol{d}-6} \longrightarrow \dots$$

• 4-periodic family ([HKT20b; BC18; Sto88; KT90; Pet68]):

$$\Omega^{\mathrm{Spin}\times\mathbb{Z}/2}_{\boldsymbol{d}} \xrightarrow{\mathrm{sm}_{\boldsymbol{q}}} \Omega^{\mathrm{Pin}^-}_{\boldsymbol{d}-1} \xrightarrow{\mathrm{sm}_{\boldsymbol{q}}} \Omega^{\mathrm{Spin}\times_{\mathbb{Z}/2}\mathbb{Z}/4}_{\boldsymbol{d}-2} \xrightarrow{\mathrm{sm}_{\boldsymbol{q}}} \Omega^{\mathrm{Pin}^+}_{\boldsymbol{d}-3} \xrightarrow{\mathrm{Spin}\times\mathbb{Z}/2} \dots$$

Untwisting

Idea: Let ρ be the k-dim'l twisting datum.

- periodic Smith families (with period n) occur when $n\rho$ is appropriately oriented.
- in that case, the spectrum untwists:

 $MTH \wedge X^{n\rho} \simeq MTH \wedge \Sigma^{kn}X$

The Spin Case

There is an isomorphism of MTSpin-modules

MTSpin $\wedge X^{n\rho} \simeq MT$ Spin $\wedge \Sigma^{nk}X$

if and only if $n\rho$ has a spin structure.

• The order of the image of $\rho \in [X, BO]$ under the homomorphism $[X, BO] \rightarrow [X, BO/BSpin]$ determines periodicity

Untwisting

Idea: When $n\rho$ is appropriately oriented, the spectrum untwists:

$$MTH \wedge X^{n
ho} \simeq MTH \wedge \Sigma^{kn}X$$

Examples

- n = 1: $X = B\mathbb{Z}/2$; no orientation condition for σ
 - $MTO \wedge (B\mathbb{Z}/2)^{\sigma}_+ \simeq MTO \wedge \Sigma (B\mathbb{Z}/2)_+$
- n = 2: X = BU(1); 2γ is spin
 - check: for any complex vector bundle E, E is oriented, and 2E is spin
 - $MT{
 m Spin} \wedge BU(1)^{2\gamma} \simeq MT{
 m Spin} \wedge \Sigma^4 BU(1)$
- n = 4: $X = B\mathbb{Z}/2$; 4σ is spin
 - check: for any real bundle E, 2E is oriented, and 4E is spin
 - MTSpin $\wedge (B\mathbb{Z}/2)^{4\sigma}_+ \simeq MT$ Spin $\wedge \Sigma^4 B\mathbb{Z}/2$.

References I

- A. Kapustin, "Symmetry protected topological phases, anomalies, and cobordisms: Beyond group cohomology,", 2014, https://arxiv.org/abs/1403.1467. arXiv: 1403.1467 [cond-mat.str-el].
- [2] A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang, "Fermionic symmetry protected topological phases and cobordisms," J. High Energy Phys., no. 12, 052, front matter+20pp, 2015, https://arxiv.org/abs/1406.7329, ISSN: 1126-6708. DOI: 10.1007/jhep12(2015)052.
- D. S. Freed and M. J. Hopkins, "Reflection positivity and invertible topological phases," Geometry & Topology, vol. 25, no. 3, pp. 1165–1330, 2021, https://arxiv.org/abs/1604.06527. DOI: 10.2140/gt.2021.25.1165. [Online]. Available: https://doi.org/10.2140%2Fgt.2021.25.1165.
- R. Thorngren and D. V. Else, "Gauging spatial symmetries and the classification of topological crystalline phases," *Physical Review X*, vol. 8, no. 1, Mar. 2018, https://arxiv.org/abs/1612.00846.
 DOI: 10.1103/physrevx.8.011040. [Online]. Available: https://doi.org/10.1103/physrevx.8.011040.
- [5] Z. Komargodski, A. Sharon, R. Thorngren, and X. Zhou, "Comments on abelian Higgs models and persistent order," *SciPost Physics*, vol. 6, no. 1, Jan. 2019, https://arxiv.org/abs/1705.04786. DOI: 10.21468/scipostphys.6.1.003. [Online]. Available: http://dx.doi.org/10.21468/SciPostPhys.6.1.003.

References II

- [6] R. Thorngren, "Topological terms and phases of sigma models,", 2017, https://arxiv.org/abs/1710.02545. DOI: 10.48550/ARXIV.1710.02545. [Online]. Available: https://arxiv.org/abs/1710.02545.
- [7] C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, "Anomalies in the space of coupling constants and their dynamical applications I," *SciPost Phys.*, vol. 8, no. 1, Paper No. 001, 57, 2020, https://arxiv.org/abs/1905.09315.
- [8] A. Kapustin and L. Spodyneiko, "Higher-dimensional generalizations of Berry curvature," Physical Review B, vol. 101, no. 23, Jun. 2020, https://arxiv.org/abs/2001.03454. DOI: 10.1103/physrevb.101.235130. [Online]. Available: https://doi.org/10.1103/physrevb.101.235130.
- [9] P.-S. Hsin, A. Kapustin, and R. Thorngren, "Berry phase in quantum field theory: Diabolical points and boundary phenomena," *Physical Review B*, vol. 102, no. 24, Dec. 2020, https://arxiv.org/abs/2004.10758. DOI: 10.1103/physrevb.102.245113. [Online]. Available: https://doi.org/10.1103/physrevb.102.245113.
- [10] X. Wen *et al.*, "Flow of (higher) berry curvature and bulk-boundary correspondence in parametrized quantum systems,", 2021, https://arxiv.org/abs/2112.07748. DOI: 10.48550/ARXIV.2112.07748. [Online]. Available: https://arxiv.org/abs/2112.07748.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④�♡

- [11] E. Witten, "Fermion path integrals and topological phases," Reviews of Modern Physics, vol. 88, no. 3, Jul. 2016, https://arxiv.org/abs/1508.04715. DOI: 10.1103/revmodphys.88.035001. [Online]. Available: https://doi.org/10.1103/revmodphys.88.035001.
- [12] I. Hason, Z. Komargodski, and R. Thorngren, "Anomaly matching in the symmetry broken phase: Domain walls, CPT, and the Smith isomorphism," *SciPost Physics*, vol. 8, no. 4, Apr. 2020, https://arxiv.org/abs/1910.14039, ISSN: 2542-4653. DOI: 10.21468/scipostphys.8.4.062. [Online]. Available: http://dx.doi.org/10.21468/SciPostPhys.8.4.062.
- [13] C. G. Callan Jr and J. A. Harvey, "Anomalies and fermion zero modes on strings and domain walls," *Nuclear Physics B*, vol. 250, no. 1-4, pp. 427–436, 1985.
- [14] C. Callias, "Axial anomalies and index theorems on open spaces," Communications in Mathematical Physics, vol. 62, no. 3, pp. 213–234, 1978.
- [15] R. Bott and R. Seeley, "Some remarks on the paper of Callias," Communications in Mathematical Physics, vol. 62, no. 3, pp. 235–245, 1978.
- [16] D. Thouless, "Quantization of particle transport," *Physical Review B*, vol. 27, no. 10, p. 6083, 1983.

References IV

- [17] R. C. Kirby and L. R. Taylor, "A calculation of Pin⁺ bordism groups," Commentarii Mathematici Helvetici, vol. 65, no. 1, pp. 434–447, Dec. 1990, ISSN: 1420-8946. DOI: 10.1007/BF02566617. [Online]. Available: https://doi.org/10.1007/BF02566617.
- [18] A. Debray, M. Dierigl, J. J. Heckman, and M. Montero, The Chronicles of IIBordia: Dualities, Bordisms, and the Swampland, en, arXiv:2302.00007 [hep-th], Jan. 2023. [Online]. Available: http://arxiv.org/abs/2302.00007 (visited on 11/05/2023).
- [19] P. E. Conner and E. E. Floyd, *Differentiable periodic maps* (Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33). Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964, pp. vii+148.
- [20] S. Stolz, "Exotic structures on 4-manifolds detected by spectral invariants," *Invent. Math.*, vol. 94, no. 1, pp. 147–162, 1988, ISSN: 0020-9910. DOI: 10.1007/BF01394348. [Online]. Available: https://doi.org/10.1007/BF01394348.
- [21] A. Beaudry and J. A. Campbell, "A guide for computing stable homotopy groups," in *Topology and quantum theory in interaction*, ser. Contemp. Math. Vol. 718, https://arxiv.org/abs/1801.07530, Amer. Math. Soc., Providence, RI, 2018, pp. 89–136. DOI: 10.1090/conm/718/14476.
- [22] F. P. Peterson, Lectures on Cobordism Theory (Lectures in Mathematics). Kinokuniya Book Store Co., Ltd., 1968.