Smith Homomorphisms and Anomaly Matching Arun Debray³, Sanath Devalapurkar¹, Cameron Krulewski², Leon Liu¹, Natalia Pacheco-Tallaj², and Ryan Thorngren⁴

¹Harvard University, ²Massachusetts Institute of Technology, ³Purdue University, ⁴KITP.

Objectives

- Use Smith homomorphisms to match anomalies in the symmetry broken phase, generalizing the \mathbb{Z}_2 case done in [1, 2].
- Find an anomaly obstruction to having a spontaneously broken fully-gapped phase, where the symmetry is broken by some order parameter.
- Perform the anomaly matching procedure in free-fermion theories.

Hypothesis

Given

- a tangential structure $\eta: X \to BO$.
- a d dimensional field theory Z with tangential structure X and anomaly $\alpha \in \Omega^{d+1}(X^{\eta})$.
- a symmetry-breaking order parameter ϕ transforming in $\rho: X \to BO_n$.
- the IR is gapped,

\mathbb{Z}_2 case

In the \mathbb{Z}_2 case, the tangential structures are 4-periodic, connected by Smith homomorphisms:

 $\operatorname{Spin} \times \mathbb{Z}_2 \rightsquigarrow \operatorname{Pin}^- \rightsquigarrow \operatorname{Spin} \times_{\mathbb{Z}_2} \mathbb{Z}_4 \rightsquigarrow \operatorname{Pin}^+.$

Here are the anomaly classes in different dimensions:

d+1	Spin	Spin $\times \mathbb{Z}_2$	Pin ⁻	Spin $\times_{\mathbb{Z}_2} \mathbb{Z}_4$	Pin ⁺
0	0	0	\mathbb{Z}_2	0	\mathbb{Z}_2
1	\mathbb{Z}_2	\mathbb{Z}_2^2	\mathbb{Z}_2	\mathbb{Z}_4	0
2	\mathbb{Z}_2	\mathbb{Z}_2^2	\mathbb{Z}_8	0	\mathbb{Z}_2
3	\mathbb{Z}	$\mathbb{Z}\oplus\mathbb{Z}_8$	0	\mathbb{Z}	\mathbb{Z}_2
4	0	0	0	0	\mathbb{Z}_{16}
5	0	0	0	\mathbb{Z}_{16}	0
6	0	0	\mathbb{Z}_{16}	0	0

Introduction

A d dimensional field theory Z with global symmetry Gcan have 't Hooft anomalies. By [3], these are classifed by cobordism invariants $\Omega^{d+1}(BG)$. 't Hooft anomalies are powerful invariants, as they are preserved under any deformation, including RG flow.

Following [1], we investigate anomaly matching/constraints in the symmetry broken phase, where some symmetry of G is broken in the IR. The symmetry is broken by an order parameter that transforms in some representation V of G. In this phase, there are domain walls/defects when we set twisted boundary conditions. There are confined degrees of freedom that live over these defects. They have (twisted) G symmetry with anomalies. Following [1], we perform anomaly matching on these defects via Smith homomorphisms.

Smith Homomorphism

Smith homomorphisms are maps between different bordism groups of different dimensions, and thus anomalies

then

• the defect created by twisted boundary condition has excitation localized at $\langle \phi \rangle = 0$. • It has anomaly $\beta \in \Omega^{d+1-n}(X^{\eta+\rho})$ such that $sm: \beta \mapsto \alpha.$

Free Fermion Symmetry Breaking

Consider a Dirac fermion $\psi = (\psi_L, \psi_R)$ in 3+1d with U(1)symmetry and charges (n + 1, n). With order parameter a charge -1 boson ϕ , the Yukawa coupling

$\phi \psi_R \psi_L + h.c.$

is U(1)-invariant. Consider the Lagrangian: $\mathcal{L} = i\bar{\psi}\partial_{\mu}\gamma^{\mu}\psi + \phi\bar{\psi}_{R}\psi_{L} + h.c. + \partial_{\mu}\phi^{*}\partial^{\mu}\phi + V(|\phi|^{2})$ We set the potential to be the sombrero potential [4]:

U(1)Case

We focus on the 3 + 1 d to 1 + 1d. For U(1) symmetry, there is a 2-periodic spin family:

```
\operatorname{Spin} \times U(1) \rightsquigarrow \operatorname{Spin}^{c} = \operatorname{Spin} \times_{\mathbb{Z}_{2}} U(1)
```

As mentioned, there is a massless 1+1d left-handed chiral fermion Ψ living at $x^2 = x^3 = 0$. The charge of Ψ is

$(n+\frac{1}{2})$

The fractional charge means that it has Spin^{c} symmetry. Both 3 + 1 d fermionic U(1) theories and 1 + 1 d Spin^c theories have 2 perturbative anomalies:

Symmetry	Dimension	Anomaly Polynomials
$\operatorname{Spin} \times U(1)$	3 + 1	$tr(\gamma^5 c) \ tr(\gamma^5 c^3)$
Spin^{c}	1 + 1	$tr(\gamma^3) \ tr(\gamma^3 c^2)$

of different dimensions. Given

• a homotopy type X• a tangential structure $\eta: X \to BO$ • an *n*-dimensional vector bundle $\rho: X \to BO_n$ there is a fiber sequence of Thom spectra: $S_X(\rho)^\eta \to X^\eta \xrightarrow{sm} \Sigma^{-n} X^{\eta+\rho},$ where $S_X(\rho)$ is the sphere bundle of ρ over X.

Anomaly Matching Map

Following [3], the anomalies of a d dimensional field theory with tangential structure $\eta: X \to BO$ are classified by $\Omega^{d+1}(X^{\eta}).$ Taking Ω^* , we get a long exact sequence of anomaly groups:

 $\cdots \to \Omega^{*-n}(X^{\eta+\rho}) \xrightarrow{sm} \Omega^*(X^{\eta}) \to \Omega^*(S_X(\rho)^{\eta}) \to \cdots$

Periodic Families

Often as we iterate the Smith homomorphism, the Thom spectrum X^{η} repeats. That is,

As ϕ condenses, the U(1) symmetry is broken.

Twisted Boundary Condition

```
Using polar coordinates
                 (x^2, x^3) = (r\cos\theta, r\sin\theta),
we set twisted boundary conditions:
                      \phi(r,\theta) = \phi_0(r)e^{i\theta}
with \phi_0(r) being
                     Solving EOM
```

The anomaly matching becomes: $sm: (1, (n+\frac{1}{2})^2) \mapsto (n+1-n, (n+1)^3 - n^3)$ which can be realized by a linear map $\begin{pmatrix} 1 & 0 \\ 1/4 & 3 \end{pmatrix}$

We can generalize this to perturbative chiral U(1) anomalies in general (even) dimensions.

Future Work

- For continuous symmetry, relate the anomaly matching on the defect with the WZW term for the IR sigma model to the vacua.
- Extend the anomaly matching to higher form symmetries and higher groups, and beyond free-fermions.

References

[1] Itamar Hason, Zohar Komargodski, and Ryan Thorngren. Anomaly matching in the symmetry broken phase: Domain walls,

$X^{\eta+k\rho} \simeq \Sigma^{kn} X^{\eta}.$

Here are some examples of periodic families:

X	ρ	Period	Symmetry
B Spin × $B\mathbb{Z}_2$	sign rep	4	$\begin{array}{c} \operatorname{Spin} \times \mathbb{Z}_2\\ \operatorname{Pin}^-\\ \operatorname{Spin} \times_{\mathbb{Z}_2} \mathbb{Z}_4\\ \operatorname{Pin}^+ \end{array}$
BSpin × $BU(1)$	charge 1	2	$\begin{array}{c c} \operatorname{Spin} \times U(1) \\ & \operatorname{Spin}^c \end{array}$
$BSpin \times BSU(2)$	2	1	$\operatorname{Spin} \times SU(2)$
$B(\operatorname{Spin} \times_{\mathbb{Z}_2} SU(2))$	$\underline{3}$ real	2	$\frac{\text{Spin} \times_{\mathbb{Z}_2} SU(2)}{\text{Spin} \times SO(3)}$

Take the ansatz $\psi = h(r)\Psi(x^0, x^1)$. The EOM becomes $i \partial_i h(x^i) \gamma_L^i \psi_L = \phi_0(r) e^{-i\theta} h(x^i) \psi_R$ (0.1) $i \ \partial_i h(x^i) \ \gamma_R^i \ \psi_R = \phi_0(r) \ e^{+i\theta} \ h(x^i) \ \psi_L.$ (0.2)

Solving this, we get

Therefore Ψ is a left-handed chiral fermion in 1 + 1d.

cpt, and the smith isomorphism. SciPost Physics, 8(4), Apr 2020.

[2] Clay Cordova, Kantaro Ohmori, Shu-Heng Shao, and Fei Yan. Decorated \mathbb{Z}_2 symmetry defects and their time-reversal anomalies.

Physical Review D, 102(4), aug 2020.

[3] Daniel S Freed and Michael J Hopkins. Reflection positivity and invertible topological phases. Geometry & Topology, 25(3):1165–1330, may 2021.

[4] Rupert Millard. Mexican hat potential polar. Sep 2009.

Acknowledgements

We would like to thank Ryan Thorgren for meeting and explaining his work to us. Y.L. would like to thank Juven Wang, Rok Gregoric for helpful conversations.