
ON KHOVANOV AND KNOT INSTANTON HOMOLOGY

YU LEON LIU

In this minor thesis we examine the relationship between Khovanov homology [1] and knot instanton
homology, more specfically the one defined in [3]. While both are homology theory for knots, they
are defined in completely different fashions: Khovanov homology is algebraic, uses link diagrams, and
categorifies the Kauffman brackets. On the other hand, knot instanton homology belongs to a family
of Floer homology theories, which do Morse theory on the infinite dimensional space of instantons and
requires difficult analytic results. The main theorem is the following 1:

Theorem 0.1. Let L be a link in R3. There is a spectral sequence, whose E2 page is the Khovanov
homology 2 Kh(L) of the link L, converging to the knot instanton homology I♯(L).

In this notes, we will define both Khovanov homology and knot instanton homology, and cover the
proof of this theorem (following [3]).

Remark 0.2. Using this spectral sequence, Kronheimer and Mrowka in [3] was able to show that
Khovanov homology is an unkot detector: a knot K is the unknot iff the reduced Khovanov homology
Khr(K) is Z. Let us sketch the argument: with a bit more work, one can show that there is a spectral
sequence whose E2 page is the reduced Khovanov homology Khr(K), converging to the reduced
instanton homology I♮(K), a variant of I♯(K), defined in Section 2.4. Furthermore, using the excision
property of I♮(K), one can show I♮(K) is isomorphic to the sutured Floer homology of the knot
complement, whose rank is a known unknot detector [2]. Namely, K is an unkot iff I♮(K) is Z. Since
reduced Khovanov homology is the E2 page of the spectral sequence, its rank has to be larger than the
rank of I♮(K), therefore Khr(K) being rank one implies that K is the unkot.

Outline: In Section 1 we quickly review the construction of Khovanov homology, following [1] . In
Section 2 we develope the necessary background on singular instanton and the moduli space of ASD
connections on them. In Section 3 we define various knot instanton homologies using the machinary in
the previous section. In Section 4 we prove a Skein long exact sequence result, which is the building
block of the spectral sequence. In Section 5 we generalize the knot instanton construction which
incoporates the cube of resolution, and prove Theorem 5.18, which is a generalization of the Skein
long exact sequence result. In Section 6 we show that the E2 of the spectral sequence is the Khovanov
homology.

Acknowledgement: I would like to graciously thank Professor Peter Kronheimer for supervising
my minor thesis.

1This is not the first paper constructing a spectral sequence from Khovanov homology to objects in Floer homology, see
[4].
2Note that we really construct the Khovanov homology of the mirror link, as we swap the notion of 0 and 1 resolutions
to be more consistent with later sections.
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Figure 1. On the left we see a local crossing and its 1 and 0 resolutions. On the
right we see the bordism from the 1 resolution to the 0 resolution.

1. Khovanov homology and the cube of resolutions

1.1. Cube of resolutions. Let L′ be a link diagram, that is, a 2D projection of a link, see Figure 1.
We can “smooth” the crossing by locally modifying it. Moreover, there is a natural bordism S1,0 from
the 1 resolution to the 0 resolution. 3

Let J be the set of crossings, then for each element v ∈ [0, 1]J , we have a disjoint union of circles
in the plane L′

J (a link diagram with no crossing), by replcaing replace the crossing by the vj-th
resolution at crossing j. Furthermore, given two elements v, v′ with v′

j ≥ vj for every j, then there is a
canonical bordism Sv,v′ from L′

v to L′
v′ : away from the crossing the bordism is the trivial bordism,

and at the j crossing its the bordism S1,0 (see Figure 1)when v′
j > vj and the trivial bordism when

v′
j = vj . Weca ll this the cube of resolution. See Figure 2 for an example.

1.2. Khovanov homology. Using the cube of resolution, we are going to construct a chain complex
of graded abelian groups Kh(L′) to each link diagram L′, following [1].

To do that, we first have to introduce V :

Definition 1.1. As a graded abelian group, V = Z[1] ⊕ Z[x], where 1 lives in degree 1 and x lives in
degree −1. Furthermore, we have a multiplication µ : V ⊗ V → V :

(1.2) µ : 1 ⊗ 1 7→ 1, 1 ⊗ x, x ⊗ 1 7→ x, x ⊗ x 7→ 0.

and comultiplication ∆ : V → V ⊗ V :

(1.3) ∆ : 1 7→ 1 ⊗ x + x ⊗ 1, x 7→ x ⊗ x.

Remark 1.4. (V, µ, ∆) extends to a commutative Frobenius algebra, see [1] for detail.

Now we can construct the Khovanov chain complex:

Construction 1.5. Let L′ be a link diagram and J the set of crossings. For each v ∈ [0, 1]J , if L′
v

has n components we assign the abelian group CKh(L′
v) := V ⊗n, Furthermore, let v′ >1 v differ by a

single crossing, we assign a map fv,v′ : CKh(v) → CKh(v′) by the following rule:
(1) fv,v′ is identity away from the V ’s labelled by the circle components in the crossing.
(2) If two circle components merge into one, then we assign µ : V ⊗2 → V . See left half of Figure 3.

3Our numbering of the resolution is reverse of Khovanov’s, in particular, our 1 resolution is his 0 resolution in [1]
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Figure 2. The cube of resolution for the Hopf link H.

Figure 3. The two different scenarios for S1,0.

(3) If one circle splits into two, then we assign ∆ : V → V ⊗2. See right half of Figure 3.
Now we define the Khovanov chain complex as follows: The d-th (cohomological) graded abelian

group is ⊕vd
CKh(L′

vd
)[d], where vd runs over v with d many 1 resolutions. The differential

(1.6) ∂ : ⊕vd
CKh(vd) → ⊕v′

d+1
CKh(v′

d+1)

is defined by
∑

d,d′(−1)
σvd,v′

d+1 fvd,v′
d+1

, where σvd,v′
d+1

are signs that we will not specify. See [1] for
details.

Khovanov in [1] proved that its homology is a link invariant 4:

4Again we are really defining the Khoavnov homology of the mirror link L̄.
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Theorem 1.7 (Khovanov). The doubly graded cohomology groups H∗(Kh([L′])) is independent of the
link diagram L′.

From now on, we will denote the Khovanov homology L of a link as Kh(L).

2. Background on instanton homology

2.1. How to do Floer homology. Let us quickly review the basic idea of Floer homotopy theory.
The starting point is the relationship between the Chern-Simons functional and the ASD equations.
Let Y be a three manifold and P a principle SU(2) bundle on Y . We have the Chern-Simons functional
CS(A) = A ∧ dA + 2

3 [A, A] on the space of connections. The critical points are the flat connections.
On the other hand, on a four-manifold (possibly with boundary) X and a principle G bundle P on

X, fix a Riemannian metric g on X, one can define the anti-self dual (ASD) equation:

(2.1) F +
A = 0

where FA is the curvature of A and (−)+ is the projection to the self-dual part of the curvature.
We have the following:

Proposition 2.2. Consider the product four manifold R × Y . A connection A on Y gives rise to a
product connection A + dt on R× Y . Then A is a flat connection (a critical point of the CS functional)
iff A + dt solves the ASD equation.

This means that we can do Morse theory on the space of connections: The critial points are the flat
connections and the gradient flow equation is the ASD equation. We will adopt this approach to our
setting, which involves instantons with singularity around links and link bordisms.

2.2. Singular instantons. First let us explain the motivation: fixing an oriented four manifold X

with an embedded surface Σ. We are interested in instantons on X with singlarities around Σ, on
principle G = SO(3) = PSU(2) bundles that doesn’t extend over Σ.

It turns out the ones that we care about will give rise to an extension over a 2-fold cover π : Σ∆ → Σ.
Now let us give an model example:

Example 2.3. Consider a flat G connection on B4\B2 with holonomy around the linking circle being
order 2 5 The eigenspaces of the holonomy decomposes the fundamental R3 bundle as ξ ⊕ Q, where
ξ ≃ R is the trivial rank-1 bundle and Q is the rank 2 bundle, with eigenvalue −1. Now we can
construct a new connection:

(2.4) A0 = A1 − 1
4 idθ

where dθ is an angular coordinate normal to B2, and i is a section of the adjoint representation that
kills ξ and squares −1 on Q (so a 90 degree rotation on Q). Therefore A0 has trivial holonomy and
the bundle extends over B2.

However, at each point, there is two choices of idθ. Therefore globally, the family of choices forms a
double cover Σ∆ over Σ.

To package this together, we can consider principle G bundles on the non-Hausdorff space X∆,
which is X glued with Σ∆ along Σ. This is a space with a map to X, with single fibers over X\Σ and
double fibers overe Σ. Now we will develope the language to set this up.

5So a 180 degree rotation around some plane.



ON KHOVANOV AND KNOT INSTANTON HOMOLOGY 5

Definition 2.5. Let Σ∆ → Σ be a double cover, aka a principal Z/2 bundle. Let µ be a tubular
neighborhood of Σ in X and µ̃∆ → µ be the corresponding double cover. The non-Hausdorff space X∆
is the identification of X\Σ and µ̃∆, where each point in x ∈ µ̃∆\Σ is identified with its image in X\Σ.

Let µ∆ ⊂ X∆ be the image of µ̃∆.

Remark 2.6. We can think of X∆ as the formal stacky pushout:

(2.7)
µ̃∆\Σ X\Σ

µ̃∆.

Similarly for µ∆:

(2.8)
µ̃∆\Σ µ\Σ

µ̃∆.

Definition 2.9. A principle G bundle P∆ → X∆ is the data of:
(1) A G bundle on µ̃∆ and X\Σ.
(2) A bundle isomorphism on their pullback to µ̃∆\Σ.

Similarly for µ∆.

Lastly, we want a O(2) reduction of P∆|µ∆ in a special form: given a rank 2 bundle Q̃ → Σ∆, such
that the orientation bundle identified with that of Σ∆: o(Q̃) ≃ o(Σ∆). Note that o(Σ∆) is pulled back
from Σ and is therefore invariant under deck transforms. Now to make a bundle over the quotient µ∆,
we must give an identification Q|µ̃∆ ≃ τ∗Q|µ̃∆ .

Let NΣ∆ be the normal bundle of Σ pulled back to Σ∆. Note that it has a canonical section s1
when pulled back to µ̃∆. Consider an orientation preserving isometry

(2.10) ρ : NΣ∆ → Hom−(τ∗(Q̃), Q̃)

where Hom− means orientation reversing maps. In addition, ρ has to satisfy the constraint ρ(v)ρ(τ(v)) =
1 for any unit vector v ∈ NΣ∆ . In particular, ρ(s1) gives an gluing of Q and τ∗Q on µ̃∆\Σ. Using this,
we can define singular bundle data on (X, Σ):

Definition 2.11. A singular bundle data is the following:
(1) A double cover Σ∆ → Σ.
(2) A principle G bundle P∆ → X∆.
(3) A rank 2 bundle Q̃ → Σ∆ whose orientation bundle is identified with o(Σ∆), the orientation

bundle for Σ∆.
(4) An orientation-preserving isometry ρ : NΣ∆ → Hom−(τ∗(Q̃), Q̃), which defines a quotient

bundle Q∆ on µ∆ by above.
(5) A O(2) reduction of P∆|µ∆ to Q∆.

Remark 2.12. In this case, Σ∆ is determined by P , by the argument in Example 2.3 above.

2.3. Topological classification of singular bundle data. We are interested in classiying singular
bundles on X∆. To start, we replace the non-Hausdorff space by a nicer space Xh

∆ with the same
homotopy type:
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Definition 2.13. Let ∂(µ̃∆) be the boundary of µ̃∆. Xh
∆ is the pushout

(2.14)
∂(µ̃∆) X\int (µ)

µ̃∆.

Therefore we are only identifying away from a disk bundle.

We get an induced map π : Xh
∆ → X, with single fibers away from int µ and the inverse image of µ is

a 2-sphere bundle D over Σ. There is an involution t : Xh
∆ → Xh

∆ over X that is an orientation-reversing
map for each 2-sphere.

Let us describe its various homology and cohomology classes:

Lemma 2.15. H4(Xh
∆;Z) has rank 1 + s where s is the number of components on Σ where ∆ is trivial.

Given a trivialization of ∆, the free generators are the fundamental classes of 2-sphere bundle D, and
an additional integer class [X+] coming from a section X → Xh

∆. If ∆ non-trivial, free generators are
the fundamental class of the orientable component, and 2[X∆]. 2X∆] is defined follows: away from the
disk bundle it is pulled back from X\Σ, inside the disk bundle we pick half a sphere for each component
of Σ.

Lemma 2.16. Let a be the components of Σ where ∆ is non-trivial, then the torsion subgroup
of H4(Xh

∆; [Z]) is isomorphic to (Z/2)a−1 for a ≥ 2, zero otherwise. Given x1, .., xa in different
components of D, ξi be the image in H4(Xh

∆) of a generator of H4(Xh
∆, Xh

∆ − xi) ≃ Z with

< ξi, [X∆] >= 1

. Then the generators are ξi − ξi+1.

Lastly, this follows from the Mayer-Vietoris:

Lemma 2.17. The group H2(Xh
∆;Z/2) lies in an exact sequence:

(2.18) 0 → H2(X;Z/2) → H2(Xh
∆;Z/2) e−→ (Z/2)N → H1(X)

where N is the number of components of Σ, e is restriction to the fibers S2
i ⊂ D, one for each component

of Σ.

Now to classify SO(3) bundles on a topological space Z: first P has a w2(P ) ∈ H2(Z,Z/2).
Furthermore, the isomorphism class of bundles with given w2 is acted transitively by H4(Z,Z) by
inserting instantons. The action might not be free when X has 2-torsion, the kernel is subgroup
T 4(Z; w2) = {β(x) ∪ β(x) + β(x ∪ w2)|x ∈ H1(Z;Z/2)} where β is the Bockstein Hi(Z;Z/2) →
Hi+1(Z;Z).

Note that singluar bundle data implies that w2(P∆) is non-zero for every 2-sphere fiber in D.

Proposition 2.19. The possible w2 for singular bundle data lies in a single coset of H2(X;Z/2) in
H2(X∆,Z/2). Fix a w2 in such coset. H4(X∆,Z) acts transitively on the isomorphism class of P∆
with fix w2 bundle in the following way: given element λ ∈ H4(X∆,Z), suppose it is the characteristic
class of a single oriented 4-simplex σ,

(1) If σ lies in X\µ ⊂ Xh
∆, which we call it adding an instanton.

(2) If σ lies in an orientable component of D, furthermore, it lies in the distinguish copy of µ

chosen in [X∆], we call it adding an anti-monopole.
(3) If it lies on the other copy or D is not orientable, call it adding a monopole.

Furthermore, from the description of H4(Xh
∆;Z), we have the following rules:
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(1) adding a monopole and anti-monopole to an orientable component is same as adding an
instanton.

(2) Adding two monopoles in an non-orientable component is the same as adding an instanton.
(3) For any x ∈ H1(X;Z/2), let n be the number of components where w1(∆) ∪ x is non-zero,

then adding n monopoles in those components is equivalent to adding n/2 instantons. Note n

is necessarily even.

2.4. Singular instantons on knots and Chern-Simons functional. Fix a closed oriented connected
three manifold Y with a link L ⊂ Y . Once again we fix G = SO(3), although much of this generalizes.

Definition 2.20. A singular bundle data is the following:
(1) A double cover L∆ → L.
(2) A G bundle P∆ on the non-Hausdorff sapce Y∆.
(3) A reduction of the structure group to O(2) in a neighborhood L∆ of L, in the standard form

describe inSection 2.2.

We pick an orbifold riemannian metric g̃ on Y with orbifold angle π around L. Using this we have
the affine space of connections C(Y, L, P ) 6 and G(Y, L, P ) the gauge transforms. Let B(Y, L, P ) =
C(Y, L, P )/G(Y, L, P ) We also have an inner product:

(2.21) < b, b′ >=
∫

Y

−tr(∗b ∧ b′)

where tr is the killing form and Hodge star is from g̃. Using this, we can define the Chern-Simons
function CS via

(2.22) (dCS)B = (∗F )B

The critical points of CS on B are flat connections mod gauge equivalence, which we denote as C.
Now we have to ensure we don’t have reducible connections. Let’s briefly recall reducible connections:

Definition 2.23. A connection A is reducible if its fixed point subgroup GA ⊂ G under gauge transform
is larger than the center 7. Equivalently, the holonomy group is a proper subgroup of G.

The notion of non-integral condition ensures this:

Definition 2.24. Given (Y, L, P ). An embedded closed oriented surface Σ is a non-integral surface is
either

(1) Σ is disjoint from L and w2(P ) is non-zer on Σ, or
(2) Σ is transverse to L and L ⊂ Σ is odd.

We say P satisfies the non-integral condition if there is a non-integral surface Σ in Y .

Proposition 2.25. If (P, Y, L) satisfies the non-integral condition, then the CS function has no
reducible critical points. Furthermore, if ∆ is non-trivial on any component, then C(Y, L, P ) has no
reducible connections at all.

2.5. Moduli space of singular instantons. Now we move on to the moduli space of ASD connections
on bordisms. Fix bordism (W, S) from (Y1, L1) to (Y0, L0) together with a singular instanton bundle
P on W . Now we extend (W, S) to a cylindrical bordism by gluing (−∞, 0] × Y1 and [0, ∞) × Y2 at
the ends. Let P1, P0 denote the restriction to Y1 and Y0.

6Define this rigorously involves Sobolev spaces
7Note that constant gauge transform by the centralizer stabilizes all connections
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Furthermore, we choose an orbifold metric g̃ (with singulariy along S) such that the ends are given
by dt2 + g̃1 and dt2 + g̃0 respectively, where g̃1 and g̃0 are orbifold metrics on Y1 and Y0.

Now fix critical points β1 ∈ C1, β0 ∈ C0. We consider all orbifold connections on P 8 such restricts
to β1 and β0 at infinities. Let M(β1, β0) be the solution to the ASD equation F +

A = 0 on W .
At this point, we need to add perturbation to make sure the critical points are discrete and the

moduli spaces are smooth manifold, which boils down to the surjectivity (regularity) of the Fredholm
maps on tangent spaces. We simply quote the statement here:

Proposition 2.26. Assume non-integral condition. There is a perturbation of CS functional, and
compatible perturbation of the ASD equation, such that

(1) All the critial points of the perturbed CS functional are irreducible and non-degenerate in the
direction transverse to the gauge orbits, thus C is discrete and finite.

(2) For any critical points β1, β0 in C1, C2, the moduli space of solutions of the perturbed ASD

connections M(β1, β0) is regular, that is, a (possibly non-compact) manifold.

From now on, we will always use singular bundles with non-integral condition, and choose a
perturbation with discrete critical points and regular moduli spaces.

2.6. Broken metric and compactification of the moduli space. Lastly, we need to compactify the
moduli space. In particular, we want to understand the limits of 1 dimensional families of instantons.

To do this, we consider a family of metrics on bordisms (W, S, P ) 9 over parameter space G. In this
case, we have a moduli space M(W, S, P ) → G, consisting of pairs ([A], g) where A solves the ASD
equation with metric g.

Once again, we need a result that there are perturbations that makes M(W, S, P ) → G a family of
manifolds, which once again boils down to the regularity of Fredholm maps.

Proposition 2.27. There exists (secondary) perturbations such that the perturbed moduli space
consists of regular solutions. Thus M(W, S, P ) → G is a map with smooth fibers. Futhermore, if G is
a manifold with corners, stratified by the dimension, there exists perturbation suh that M(W, S, P ) is
also a manifold with corners, with M(W, S, P ) → G having smooth fibers when restricts to each strata.

We want to compactify M(W, S, P ), in particular its one dimensional part. In another words, how
families of ASD solutions (with varying metric) can degenerate. To do this, we want to introduce
broken metric:

Definition 2.28. Given Yc intersecting S transversly. A broken metric is a metric in int W\Yc such
that around Yc, with normal coordinate rc, it looks like

(2.29) g = (drc/rc)2 + g̃Yc

where g̃Yc
is a orbifold metric on (Yc, Lc).

Fix β1 and β0 on the cylindrical ends, we can define a cut path over a broken metric:

Definition 2.30. A cut path from β1 to β0 is a continuous connection A on P , smooth in int W\Yc,
and its restriction on the ends is β1 and β0. A cut trajectory is a cut path whose restriction to int W\Yc

is a solution to the perturbed ASD solution.

8there are subtleties with monopole charges that we are ignoring
9one can consider a family of bordisms, though this is not necessary for our purpose.
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Now we describe a standard way a family of Riemannian metric can deform to a broken one. Fix g̃0
on W , with a collar neighborhood of Yc where the metric is a product dr2 + g̃Yc

. Let fs be a family of
functions given by

(2.31) 1 + 1/s2

r2 + 1/s2

for r ∈ [−1, 1] and 1 otherwise. Then we get a family of modified metric over s ∈ [0, ∞]:

(2.32) fs(r)dr2 + g̃Yc

In particular, when s = ∞, it is broken along Y i
c .

Moregenerally, if Yc = ⊔N
i=0Y i

c , then we can break it along each component, and get a broken metrics
parametrized by [0, ∞]N .

Definition 2.33. Fix Yc with n components, A model family of singular metrics on (W, S) with Yc is
a family parametrized by [0, ∞]N × G1, such that for any a ∈ G1, the family varying in [0, ∞]N × a is
equivalent to the broken family described above.

We will be working with families of metrics that degenerates like the model family at the boundary:

Definition 2.34. A family of broken metrics is a family of metrics over manifold with corners G,
such that for every codimension n facet, there is a cut Yc with exactly n components, such that in the
neighborhood of that point the family is equal to a neighborhood of {∞}n × G1 for some model family
for the cut Yc.

Now to compactify this, we need to know what other way can the ASD instanton slide off. Let us
summarize the relevant result here:

Proposition 2.35. Given a family of broken metrics, (after choosing suitable perturbation), we have
parametrized moduli spae Mint G(β1, β0) over int G. This is a completion M+

z,G(β1, β0), with the
following codimensional 1 strata:

(1) A cut trajectory along connected Yc.
(2) Strata from trajectory sliding off the incoming end, having the form

(2.36) M(β1, α1)0 × MG(α1, β0)0

where α1 is a critical point on Y1.
(3) Sliding off the outgoing end, having the form:

(2.37) MG(β1, α0) × M(α0, β0)

where α0 is a critial point on Y0.
Moreover, M+

G (β1, α0)d is compact when d < 4.

Remark 2.38. In general M+
G (β1, α0) is not compact, since the limit can bubble off instantons and

monopoles. However, those changes the dimension of the moduli space by multiples of 4.

Remark 2.39. In order to define the sign counts, we need to give orientation to these moduli spaces
and show compatibility at the boundaries. See [3].

3. Knot instaton homology

3.1. Instanton homologies for singular instantons. Now we can define instanton homology for
knots:
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Construction 3.1. We start by defining the chain complex. Fix (Y, L) and P a singular bundle data
on (Y, L) with non-integral condition. In addition, let g be an orbifold metric on Y . Let C be the finite
set of critical points for the (perturb) Chern-Simons functional. Let C∗(Y, L, P ) = ⊕β∈CZβ, where we
have a generator for each critical point β ∈ C.

Now to define the chain complex: fix two critical points β0, β1, then let Mβ0,β1 be the moduli space
of (perturbed) ASD instantons on the cylinder I × (Y, L) with the product orbifold metric. There is a
R translation action on Mβ1,β0 , which is free away from the constant solution. Let M̃(β0, β1) be the
quotient of such action, and throw away the constant one. Then the β1 coefficient of d(β0) is the sign
count of the zero-dimensional instantons M̃(β0, β1)0 (up to suitable signs).

Proposition 3.2. C∗(Y, L, P ) is a chain complex, that is, d2 = 0.

Proof. Given β2, β0 ∈ C, we will show that β2 component of 2d2β0 is 0. This follows from Proposi-
tion 2.35: 2d2 counts the sign count of ⊔β1∈CM̃(β0, beta1)0 × M̃(β1, β0)0. By Proposition 2.35, with
the family of metric being ∗, this precisely counts the boundaries of 1 dimensional ASD instantons
space Mβ2,β0 , by sliding of to the left or sliding of to the right. □

Furthermore, it is independent of auxiliary data:

Proposition 3.3. The instanton homology is independent of the auxiliary data, namely the orbifold
metric and the perturbations.

Definition 3.4. We denote the homology of C∗(Y, L, P ) as I∗(Y, L, P ). We will often leave P to be
implicit.

3.2. Bordisms and functorialities. In this section we show that the instanton homology is compatible
with bordism.

Construction 3.5. Given a bordism (W, S) with singular instanton P satisfying non-integral condition,
we will define a chain map fW : C∗(Y1, L1) → C∗(Y0, L0).

Once again, we need to define the β0 coefficient fW of β1, for βi ∈ Ci. Let M(β1, β0) be the
(perturbed) moduli space of ASD solutions, then the coefficient is the sign count of zero dimensional
moduli space M(β1, β0)0.

Remark 3.6. Note that here there is no R action we are quotienting by, as oppose to the chain complex
differential.

Just as before, we have the following:

Proposition 3.7. (1) The map above is a map of chain complex, that is, fd + df = 0.
(2) The map f on homology is independent of the auxiliary data.

Proof. Let us prove the first part. By Proposition 2.35, we see that fd + df is counting the boundary
of M+(β1, β0)1, which is a compact 1-manifold with boundary. □

Warning 3.8. There is a sign ambiguity in this construction that we have not mentioned. Namely, the
chain complex is defined up to ±1. See [3] for detail.

Lastly, we want an homology theory without mentioning “with a singular bundle data”. We can
construct (an isomorphism class) of singular bundle data by specifying the Poincare dual of w2(P ).

Definition 3.9. A WINK triple is (Y, L, ω) consisting of:
(1) Y a closed, oriented, connected 3-manifold.
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Figure 4. On the left we have L♮ for the Hopf link, on the right we have L♯ for the Hopf link.

(2) L an unoriented link in Y .
(3) ω an embedded 1-manifold with ω ∩ L = ∂ω, meeting L normally at endpoints.

Moreoever, there is a natural notion of bordisms between them.

Definition 3.10. A bordism between (Y1, L1, ω1) to (Y2, L2, ω2) is an isomorphism class of triples:
(1) (W, S) a bordism of pairs, with W is an oriented bordism.
(2) ω ⊂ W a 2-manifold with corners, with boundary ω1 ∪ ω0 and some arcs in S, which is normal

to S. The intersection ωi ∩ S has finitely many points where the intersection is transverse.

Let WINK be the category of WINK triples and bordisms. Then

Proposition 3.11. Singular instanton homology defines a functor Iω : WINK → P −GROUP where
P −GROUP is the category of abelian groups with projective homomorphisms, that is, homomorphisms
up to ±1. We will denote Iω(Y, L) the instanton homology associated to (Y, L, ω).

3.3. Reduced and unreduced knot instanton homology. Here we introduce two more variants
for links, with varying data.

Given link L ⊂ Y with a basepoint x ∈ L and a normal vector v to L at x. Let L′ be the unit circle
at the boundary of a standard disk, and ω be a radius with tangent vector v. This defines a new link:

(3.12) L♮ = L ⊔ L′

See Figure 4 for an example.

Definition 3.13. The reduced instanton homology of (Y, L, x, v) is

(3.14) I♮(Y, L, x, v) = Iω(Y, L♮)

This defines a functor from a category with objects (Y, L, x, v) and bordisms betweem them to
P-GROUPS.
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Remark 3.15. The isomorphism class of I♮(Y, L, x, v) only depends on (Y, L) and a marked component.

Proposition 3.16. For the unknot U , I♮(S3, U) = Z.

Proof. We are computing Iω of the Hopf link H = U ♮ with an arc joining the comonents. The set of
critial points of the unperturbed Chern-Simons function is a point. Therefore the chain complex is
Z. □

We want an invariant of just links L ⊂ Y . To do so, we can just add a new unknot U with a
basepoint on U . Thus

(3.17) L♯ = (L ⊔ U)♮

which is the disjoint union of L and a Hopf link H away from L, and ω joins the two components of
the Hopf link. See Figure 4.

Definition 3.18. The unreduced instanton homology of Lis I♯(Y, L) := I♮(Y, L ⊔ U, x, v).

Corollary 3.19. I♮(∅) = Z.

Proof. ∅♯ = U ♮ = H, where U is the unknot and H is the Hopf link. The result follows from
Proposition 3.16. □

With some additional detail, we can get rid of the ±1 ambiguity:

Proposition 3.20. There is a consistent choice I♯ : LINKS → Ab, where LINKS is the category of
oriented links in R3 and bordisms thereof.

Lastly, let’s discuss the grading on the Instanton homology. Note that given two critical points
β1, β0, there is a Z/4 grading rather than a Z grading, since additing instantos and monopoles changes
a multiple of 4 to the relative grading.

Therefore we have a relative Z/4 grading for Iω. But we can define an abosolute Z/4 grading for I♯

and I♮. Let us record the one for ♯:

Proposition 3.21. (1) There is an abosolute Z/4 grading on I♯ such that the generator of I♯(∅)
is in degree 0.

(2) For any bordism (W, S) from (Y1, L1) → (Y0, L0), the grading shift is

(3.22) −χ(S) + b0(L0) − b0(L1) − 3
2(χ(W ) + σ(W )) + 1

2(b1(Y0) − b1(Y1))

4. Skein long exact sequence

4.1. Smoothings and bordisms. Let us revisit the notion of smoothing, and put them in a more
symmetric matter: Let L ⊂ Y be a link and B3 a ball in Y such that L intersect it transversly at the
four vertex of the tetrahedron (see Figure 5). When projected to the plane, the three pictures become
the crossing, 1 resolution, and 0 resoultion. Let us call them 2, 1, and 0 smoothings. More generally,
for v ∈ Z, the v smoothing is the v mod 3 smoothing. Let Lv be the corresponding link as before.
There are bordisms Sv+1,v betweem them, once again generalizing the S2,1 case (see Figure 5)

It will be crucial for us to understand the composite of the bordisms. By symmetry, it is suffice to
consider S = S1,0 ◦ S2,1. Recall that we have another bordism Sop

0,2 where we equipped S2,0 with the
opposite orientation, where S0,2 is one of the standard bordism between those smoothings.

Proposition 4.1. S, a bordism from L0 to L2 in I × Y has the form

(4.2) (I × Y, Sop
0,2)#(S4,RP 2),



ON KHOVANOV AND KNOT INSTANTON HOMOLOGY 13

Figure 5. The 3 different smoothings and the bordism S1,0.

where RP 2 is embedded in S4 with self-intersection +2. Equivalently, away from a ball B4, S is
isomorphic to Sop

0,2. Furthermore, the intersection between S and the ball B4 is an Mobius and, with
the boundary being an unknot on S3 = ∂B4.

Proof. There is a constant arc γ in the projection of S1,2 and S2,1 into the B4. Away from this arc
δ, really γ × I, formally, the neighborhood of γ × I, S2,0 looks just like Sop

0,2. However, the normal
neighborhood of γ × I intersect S2,0 to form a Mobius band. See Figure 6. □

4.2. The Skein long exact sequence. In this section we will show the following:

Theorem 4.3. The bordism Sv+1,v induces maps

(4.4) · · · → Iω(Lv) → Iω(Lv−1) → Iω(Lv−2) → · · · .

This is a long exact sequence.

Let us record a form of this that we will generalize in Section 5.1: Given the map fv−1,v−2, we can
construc the cone chain complex C∗(v − 1, v − 2). To be explicit the chain complex of C∗(v − 1, v − 2)
is C∗(v − 1)⊕C∗−1(v − 2) with the differential being

(4.5) d =
(

−dv−1 0
fv−1,v−2 dv−2

)
where dv−i is the differential for the instanton chain complex.

Corollary 4.6. We have a chain map:

(4.7) C∗(Lv) → C∗(v − 1, v − 2)

that induces an isomorphism on homology.

We will use the following algebraic lemma to proof this:

Proposition 4.8. Suppose for each i we have chain complex (Ci, di) and chain maps: fi : Ci → Ci−1.
If we have a chain homotopy ji for the composite fi−1 ◦ fi:

(4.9) di−1ji + jidi + fi−1fi = 0
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Figure 6. On top we see a 2D projection of the composite S, where we parametrize
time on the bottom. For t ∈ [0, 1] it is S2,1, from t ∈ [1, 2] it is S1,0. The purple
line is γ and the purple points are the intersection of I × δ and S. We see that
the intersection forms a circle δ. Furthermore, the green dots are the boundaries
of a tubular neighborhood of δ in §. We see that it is an unknot and the tubular
neighborhood is a Mobius strip.

for all i. Furthermore, suppose for all i, the map

(4.10) ji−1fi + fi−2ji : Ci → Ci−3

is an isomorphism on homology. Then this induce a long exact sequence on homology. Furthermore,
the map

Φ : Ci → Cone(fi)(4.11)
s 7→ (fis, jis)(4.12)

induces isomorphism on homology.

Proof of Theorem 4.3. Using the proposition above, it is suffice to construct J with those properties.
For sake of simplicity, we will focus on showing the first equation

(4.13) di−1Ji + Jidi + fi−1fi = 0.

By symmetry, it is suffice to construct J2 : C2 → C0 satisfying above.
To construct J2, we need to consider the composite bordism S = S1,0 ◦ S2,1. By Proposition 4.1,

the composite bordism is a connect sum (I × Y, Sop
0,2)#(S4,RP 2). Now we use the neck-stretching

argument to get a one parameter family of metrics on (W, S): fix a parameter τ , for τ ≥ 0, consider
the metric on S such that the critial point for S2,1 and S1,0 differ by τ + 1. Note that S1,0 always
comes after S2,1.
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This defines a family of metric over [0, ∞], where it is a broken metric at ∞. However, we want to
extend it to [−∞, ∞]: for τ ≤ 0, we sketch the neck of the connect sum. At −∞, the metric is broken
at the neck S3. Altogether we form a space G2,0 = [−∞, ∞] of broken metrics.

Now we get a parametrized moduli space M(β, α) → G2,0 for β ∈ C2, α ∈ C0. Now just as before,
we define J by having its β coefficent of J(α) to be the sign count of M(β, α)0.

To show Equation (4.13), we need to understand the one dimensional stratum of the compactification
M+(β, α). By Proposition 2.35, we see that the boundary of M+(β, α)1 are the following:

(1) The instanton slides off to either end, which contributs di−1Ji + Jidi.
(2) The metric gets broken in the middle Lv, which contributes fi−1fi.
(3) The metric gets broken at the neck S3.

Therefore it remains to argue why there is no contribution from the thrid type. Note that the pair
(S3, S1) fails the non-integral condition. Furthermore, since all solutions on (S4,RP 2) are irreducible,
and the unique critical point for (S3, S1) is reducible, there are no contributions from the cut.

It remains to show Equation (4.10), which follows from a similar construction by examining the
triple bordism S = S1,0 ◦ S2,1 ◦ S0,2. See [3] for the proof. □

5. Cube construction

5.1. Knot instanton homology of cubes. Given a link L ⊂ Y = S3. Suppose there are N disjoint
balls B3 ⊂ S3 such that the interesction L ⊂ B3 intersect at four points of a tetrahedron. For
v ∈ (Z/3)N , let Lv be the link with the vi smoothing with the i-th ball.

Fix u, v such that for each i, vi − ui = 0 or 1, we would like to construct a total chain complex
C∗(u, v). We begin with a family of metric. Let J denote the subset of balls where vj = uj + 1. Then
there is a Gv,u = RJ family of bordisms from Lv to Lu: for each τi ∈ RJ , we have a bordism it is the
constant bordism outside of the balls, but for ball j ∈ J it is the Sui,vi

bordism where the critical
point appears at time τj . There is a canonical diffeomorphism between these bordism, only the metric
is different. Therefore we get a family of metric. See Figure 7.

There is a free R action by translating all τi, let G̃v,u be the quotient, equivalently, it is the subspace
of
∑

i τi = 0.
Next, there is a natural compactification G̃uv, by taking some difference τi − τj goes to ∞. For each

simplex σ = {u = v1 < v2... < vn = v}, let

(5.1) Gσ =
∏

Gv2,v1 × ...Gvn,vn−1 .

Lemma 5.2. There is a compactification of G̃uv, called G̃+
uv, such that

(5.3) G̃+
uv = ∪σGσ.

Furthermore, this is a family of broken metrics, where the cuts are between differences τi − τj that goes
to ∞.

Example 5.4. N = 1, u = v, then G̃ = ∗. There is no compactification.

Example 5.5. Take N = 2, v = u+1 = (u1 +1, u2 +1). Then Guv ≃ R is parametrizing the difference
in time between the critical points in the two balls, and G̃+

uv adds two points at infinity, for the case
that τ1 − τ2 = ∞ and τ1 − τ2 = −∞. The cuts intersects the bordisms at Lu1+1,u2 and Lu1,u2+1.

Now we compactify the moduli space. Just as before, fix β ∈ Cv, α ∈ Cu, then we get a parametrized
family of (perturbed) ASD connection:

(5.6) M(β, α) → Guv.
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Figure 7. An example with N = 3, v = (1, 1, 1), and u = (0, 0, 0).

There is a free R action on M(β, α), when u ̸= v, which we quotient to get

(5.7) M̃(β, α) → G̃uv

As before, in the case that u = v, we throw away the constant part before quotienting. Let M̃(β, α)d

be the d-dimensional part. Now we want to compactify M̃(β, α). There are two phenonemom for the
limits at infinity:

(1) The metric gets broken in the middle.
(2) The connection slides off to the end or the slices.

To cover both of these cases, let’s consider degenerate simplicies σ = (u = v1 ≤ v2 ≤ .. ≤ vn = v),
where we allow repeats. Then given a sequence βσ = (β = β1 ∈ C(v1), β2 ∈ C(v2), ...βn = α ∈ C(vn)),
let

(5.8) M̃σ(β) = M̃(β2, β) × ...M̃(α, βn−1)

There is a natural map

(5.9) M̃σ(β) → G̃σ′

where σ′ is obtained by removing repeats from σ. By Proposition 2.35, we get

Proposition 5.10. There is a compactification M̃(β, α), M̃+(β, α) → G̃+(β, α), which is a union

(5.11) M̃+(β, α) = ∪σ ∪βσ
M̃σ(βσ)
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Moreoever, for any β, α where M̃+
1 is non-empty, the completion M̃+(β, α) is a compact 1-manifold

with boundary, with the boundary being zero dimension products of the form

(5.12) M̃(β, β1)0 × M̃(β1, α)0

with β1 ∈ Cv1 , and v ≤ v1 ≤ u a denegerate simplex. Furthermore, we can assign compatible orientation
to M̃+(β, α) and its corners.

Having this, let fv,u(β, α) be signed count of M̃0(β, α). This defines fv,u : ⊕β∈Cv
Zβ → ⊕α∈Cu

Zα.
Let C∗(v, u) be the chain complex defined as follows: the group is ⊕v≥v1≥uC∗

v1
= ⊕v≥v1≥u ⊕β′∈Cv1

Zβ′. The differential is

(5.13) F = ⊕v≥v1≥v2≥ufv1,v2

By Proposition 5.10, we have the following:

Corollary 5.14. C∗(v, u) is a chain complex, that is, F 2 = 0.

Example 5.15. When v = u, then this is simply the instanton chain complex Cω(v).

Example 5.16. When v and u only differ in one component, then C∗(v, u) is the cone of fuv

constructed in the last section.

Remark 5.17. Say v and u differ in n components, then we are really looking for (−n + 1)-dimensional
instanton on the bordism Su,v. This is because we are looking for dimension 0 instanton over a RN−1

family.

5.2. Generalization of the Skein long exact sequence. In this section we prove the generalization
of Corollary 4.6:

Theorem 5.18. Fix L with N balls as before. Pick v, u with vi −ui = 0 or 1. Let w = 2v−u = 2(v+u).
Then there is a map C∗(w) → C∗(v, u) that induces an equivalence on homology.

Proof. We will do this by induction. Note that the N = 1 case is Corollary 4.6. It is sufficient to
consider the case w = (2, .., 2), v = (1, 1..., 1), u = (0, ..., 0). Let C∗

i = ⊕v′∈{0,1}N−1(C∗
v′,i), basically we

fixed the last coordinate. Then

(5.19) C∗(u, v) = C∗
1 ⊕ C∗

0

and F is of the form

(5.20) F =
(

F11 0
F10 F00

)
.

Similarly, we have the chain complex C∗
2 where we fix the last coordinate. By induction, we have a

chain map C∗(w) → C∗
2 that induces isomorphism on homology. Therefore it suffices to show that

Theorem 5.21. There is a chain map

(5.22) C∗
2 → C∗(v, u)

that induces an isomorphism on homology.

□

This is the same form as Corollary 4.6, and can be proven in the same way.
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6. Khovanov to Instanton homology

6.1. Knot instanton spectral sequence. In this section we develope the spectral sequence and
show that it recovers the Khovanov homology.

Using the setup from last section: we have a link L with N balls where they are of smoothing 2
(the crossing one), together with ω defined away from the balls.

Recall that have a chain complex C∗
(1,1..,1),(0,0,...,0) that computes the instanton homology Iω(L).

Recall that the differential is naturally lower triangular. This means that there is a natural filtration
on C∗

(1,1..,1),(0,0,...,0) given by the sum of the coordinates, therefore:

Proposition 6.1. There is a spectral sequence converging to Iω(Y, L), whose E1 groups are the
Instanton homology ⊕v′∈[0,1]N Iω

∗ (Y, Lv′). Its E1 differential are the sums of fv′,u′ on instanton
homology, where v′ and u′ and differ only in the j-th component, where fv′,u′ is the the Sv′

j
,u′

j

bordism in the ball that they differ.

Proof. The E1 groups are the homology groups of the d0 differential. Recall that the d0 differential are
the diagonal terms. Furthermore, the one lower diagonal terms on homology gives the E1 differential.
The result follows from the fact that the diagonal terms are the instanton differentials, and the one
lower diagonal terms are precisely the chain complex maps induced by Sv′

j
,u′

j
. □

6.2. Khovanov is the E2 page. Now we connect Khovanov and knot instanton homology: given a
link diagram L′, with the associated link L ⊂ R3. We put a ball around each crossing. Furthermore,
we can attach a Hopf link at ∞, as in the sharp construction. Therefore we get a chain complex
C♯((1, .., 1), (0, ..., 0)) that computes I♯(L).

Theorem 6.2. The Z/4-graded reduction of the Khovanov homology Kh(L) is the E2 page of the the
instanton spectral sequence for I#(L).

Remark 6.3. The Z/4 relates to the double grading by the following, let q and h be the q-grading and
the homological grading, then the associated Z/4 grading is q − h − b0(L).

By Proposition 6.1, we need to show the following:
(1) The Instanton homology for unlinks of n components I♯(Un) can be identified V ⊗n.
(2) The pair of pants bordisms on instanton homology induces µ and ∆ on instanton homology,

where µ and ∆ are defined in Section 1.2.
We will start with the first part:

6.2.1. Unlinks. Let Un be an unlinks in R3 with n components, lying all on the (x, y) plane, diameter
1/2 and centered on the first n integer lattice on the x-axis. For J a subset of Un, let UJ be the subset
of unlinks with those components. By Corollary 3.19, I♯(U0) ≃ Z in degree 0 mod 4, and we fix a
generator u0 ∈ Z.

Proposition 6.4. I♯(U1) ≃ Z ⊕ Z with generators in degree 0 and −2 mod 4.

Proof. We use the Skein long exact sequence to a Hopf link H with a twist (see Figure 8). Smoothing
it gives a long exact sequence between H and H ⊔ U1, now the long exact sequence goes as

(6.5) I♯(U0) a−→ I♯(U1) b−→ I♯(U0) c−→ I♯(U0)

with a, b degree −2, and c degree 1. Therefore c = 0 and I♯(U1) is free of rank 2 with generators in 0
and −2. □
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Figure 8. Given a Hopf link with a twist, we consider the 3 smoothings around the twists.

Figure 9. D+ and D− bordisms.

To get an explicit description, let D be the standard disk in U1 that bounds in the (x, y) plane.
Let D− be the oriented bordism from U0 to U1 by pushing D into [0, 1] × R3 (see Figure 9), and D−

the bordism from U1 → U0 with opposite orientation. They give maps I♯(D+) : I♯(U0) → I♯(U1) and
I♯(D−) : I♯(U1) → I♯(U0) of degree 0 and −2.

Lemma 6.6. There are generators v+, v− for I♯(U1) in degree 0 and −2 mod 4, such that

(6.7) I♯(D+)(u) = v+, I♯(D−)(v−) = u.

Proof. For the first part, suffice to show that I♯(D+) ◦ b = id on I♯(U0). It follows from the fact that
the composite bordism is isomorphic to the product bordism. Similarly, I♯(D−) ◦ a is also the product
bordism by the reverse diagram. □

Repeating this argument, we get:

Corollary 6.8. Let A = Z[v+, v−] ≃ Z2, then we have an isomorphism of Z/4-graded abelian groups,

(6.9) ϕn : A⊗n → I♯(Un)

for all n, such that, let D+
n be the bordism from U0 to Un by standard disk, then

(6.10) I♯(D+
n )(u0) = ϕ(v+ ⊗ ... ⊗ v+)
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similarly for D−
n .

With a bit more work, one can show this for general unlinks:

Proposition 6.11. Let Un be an oriented n-component unlink Un with components L1, ..., Ln, there
is an isomorphism:

(6.12) ϕ : A⊗n → I♯(Un)

such that for any orientation-preserving isotopies Un to U ′
n, ϕU and ϕU ′ is compatible with I♯(S).

Therefore if we enumerate Un differently, this is equivalent to permuting the A’s in A⊗n.

Therefore it remains to compute what I does on unlinks.

6.2.2. Pair of pants. Let Π be the pair of pants from U1 to U2, giving rise to µ : A → A ⊗ A of degree
−2. We also have Π′ from U2 → U1, giving rise to ∆ : A ⊗ A → A of degree 0.

Lemma 6.13. Under the isomorphism ϕ : V → A, mapping x 7→ v− and 1 7→ v+, then µ and ∆
agrees with the definition in Section 1.2.

Proof. We start with µ(v+): we know that

(6.14) µ(v+) = λ1(v− ⊗ v+) + λ2(v+ ⊗ v−)

we precompose Π with a cap on U1, call this D+ ∪ Π, and we want I♯(D+ ∪ Π)(u0). Now we attach a
disk to the first disk of U2, this maps v− ⊗ v+ → v+. This total bordism gives Z → V , taking u0 to
λ1v+. However, this is just a disk D+, therefore λ1 = 1. Similarly, λ2 = 1.

Using a dual arugment, we see that ∆(v+ ⊗ v−) = ∆(v− ⊗ v+) = v−. With a bit more work, one
can show the rest. □

This completes the proof of Theorem 6.2.
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