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1. Motivation

One of the most exciting part of mathematical physics is the interplay between three seeming
different objects:

(1.1)
Braided monoidal Categories (UMTC)

2 + 1 D TQFT knot polynomial
RT

W itten

A particular example is

(1.2)
Uq(sl2)

Chern-Simons theory Jones polynomial

Remark 1.3. Let’s recall what a braided monoidal structure is on a category C. First a monoidal
structure is an associative tensor product ⊗ on C. A braided monoidal structure on (C, ⊗) is a
braiding β : x ⊗ y ≃ y ⊗ x that satisfies the Hexagon axioms, one of them relates braiding x over
(y ⊗ z) and first braid x over y and then braid it over z. The other one is about braiding z under
x and y.

In the 2000’s, Khovanov and collaborators categorified knot polynomials to knot homologies
theories. That is, instead of attaching a polynomial J(L) to a link L (really a link diagram), they
attached a chain complex to each link diagram and recovers knot polynomial by taking alternating
sum of dimensions. Note that in this case, chain complexes attached to different link diagrams of
the same link are homotopy equivalent to each other, this is some coherence structure we need to
take in account.

This raises a natural question:

Question 1.4. Is there an analogues picture replacing knot polynomials with knot homologies?

We also need to categorify the other two sides, there are natural answers:

(1.5)
Braided monoidal 2-Categories

3 + 1 D TQFT knot homologies

In this talk, we discuss partial progress in this answer, namely connecting knot homologies and
braided monoidal 2-categories.

Remark 1.6. Here’s some of the difficulties:
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(1) Since we care about chain complexes up to homotopy, they are really (∞, 2) categories,
aka they have invertible morphisms of all levels. They encode data like surface corbordism
of links and braids.

(2) The right notion of braided monoidal for ∞ categories is E2 algebra by May. Heauristically,
it is encoding fusion of points in R2.

(3) While E2 algebra is homotopically a natural notion, its difficult to give a generator and
relation definition. Our 2 category is going to be really concrete and not formal, thus it is
difficult to define a define a E2 structure

For the rest of the talk, I will sketch a construction of a E2 (∞, 2) category, and give a receipt
for how to do this in general.

2. The monoidal (2, 2) category of Soergel bimodules

First we will give a construction of the monoidal (E1) (2, 2) category of Soergel bimodules. This
is baiscally a review of Soergel bimodule.
Definition 2.1. Let k be a field of characteristic 0. We denote the graded polynomial free on n
generator k[x1, · · · , xn] as Rn, with degree |xi| = 2. Furthermore, let Rn − BMod be the abelian
category of (graded) Rn bimodules. It is monoidal under ⊗R. The grading will be present but not
important for this talk, so I will drop it.

Now we will define the monoidal 1 category of Sbimn:
Construction 2.2. Given s = (i, i + 1) ∈ Sn, which acts on Rn by permutting the generators.
Let Rs

n be the subalgebra of invariance. For n = 2, s = (12), then Rs
2 = k[x1 + x2, x1 · x2]. Let Bs

denote the Rn − Rn bimodule
(2.3) Rn ⊗Rs

n
Rn.

Let Sbimn be the smallest Karoubi-complete full monoidal subcategory of Rn −BMod that contains
R and Bs.
Remark 2.4. Objects in Sbimn are idempotents of tensors under R of Bsi

for different si.
Remark 2.5. Sbimn is an additive category, but it is not abelian. More specifically, it doesn’t have
kernels and cokernels. Crucially, the symmetric bimodule Rn(s), where as a Rn − Rn the left
Rn is twisted, is not a Soergel bimodule. Note that it implements the Sn action on Rn − BMod.
Therefore there is not a Sn action on Sbimn, therefore we have room for a braiding.

Aside from the monoidal product on Sbimn, there is also a product that goes between them:
Construction 2.6. There is an exterior product ⊠ = ⊗k : Sbimn × Sbimm → Sbimn+m, coming
from the natural map Rn ⊗k Rm ≃ Rn+m by stacking the generators.

We can construct a monoidal 2-category Sbim that captures all of the data above:
Definition 2.7. Let Sbim be the (2, 2) category with objects n ∈ N, and morphisms

(2.8) HomSbim(n, m) =
{

Sbimn n = m

0 n ̸= m

Note that being the endormorphism category, it uses the monoidal structure of Sbimn.
Remark 2.9. We can add in more morphism then just from n to n. We will discuss this at the end
of the talk.

Moreoever, the ⊠ makes Sbim into a monoidal (2, 2) category. Now we move on to building a
braided monoidal structure. However, Sbim doesn’t have a braided monoidal structure. This is
because the braiding is implemented using chain complexes of Soergel bimodules. Therefore we
need to discuss that first.
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3. Braid group action on KbSbimn

Now let’s recall the classical story of Ronquier’s braid group Brn actions on Sbimn. Before we
start, let me just remark that there are a lot of different ways to describe this, one reason is by
thinking about category O for gln. Then the reason why the n-th braid group Brn acts on it,
rather than some other group, is because Brn is the braid group associated to the Coexeter group
Sn of gln.

Since Brn is generated by the same coexeter generators si = (i, i + 1), let’s just describe its
action. Since Sbimn is monoidal, we can just find a bimodule to implement this. However, it turns
out that we need to go to chain complex KbSbim:

Definition 3.1. KbSbimn is the (∞, 1) category of bounded chain complex of Soergel bimodules,
localized at homotopy equivalence. It is monoidal as K : AddCat → StableCat from additive
(∞, 1) category to stable (∞, 1) categories is symmetric monoidal [?].

Remark 3.2. Given an additive category C, KbC as an (∞, 1) category, satisfies an extremely
useful universal property, which is that it is the universal stable category associated to C. That is,
any additive functor C → D with D stable is equivalent to an exact functor from KbC → D. This
universal property is crucial in the construction of the braided monoidal (∞, 2) category. However,
it is only available when we work with the ∞ context, and not present for its homotopy category
h1(KbC). In this sense, the fully coherent ∞ version of the proof is simpler than the 2-category
version.

Remark 3.3. Note that Sbimn is only an additive category, not abelian. Therefore we cannot
define its derived category.

Construction 3.4. Given si, we assign the chain complex F (si):

(3.5) F (si) = · · · → 0 → Rn ⊗Rs
n

Rn → 0 → · · ·

where · · · signals the degree 0 part.

Ronquier showed the following:

Theorem 3.6. This assignment defines a fully coherent monoidal map from Brn → KbSbimn.

Remark 3.7. The category of Rn − BMod has a Sn action by permuting the coordinates. This is
implemented by the permutation bimodulesRn(s), which are Rn as their underlying vectors, and
their right actions are standard one. However their left actions are twisted. For the generator
si = (i, i + 1), the left action on Rn(s) swaps the xi and xi+1 generators. Tensoring by these
permutation bimodules implements the Sn twist.

However, crucially, as mentioned above, these bimodules are not Soergel bimodules, that is,
they don’t live in Sbimn or KbSbim.

Proof. Let us give the central idea of the proof: the idea is that these Ronquier complexes F (s)
satisfies a very special property: there is a natural functor from KbSbimn → Db(Rn − BMod),
by viewing a chain complex of Soergel bimodules in the derived category of Rn bimodules. In
Db(Rn − BMod), the chain complex F (s) is quasi-coherent to the permutation bimodule Rn(s)
described above. Therefore this action recovers the symmetric group action on Db(Rn − BMod).

From there, Ronquier lifted the coherence of the symmetric group action on Db(Rn − BMod)
to the coherence data of the braid group action on KbSbimn. In some sense, the braid group ation
on KbSbimn is deformed from the symmetric group action on Db(Rn − BMod). Diagrammatically,
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we have the following commutating diagram:

(3.8)
BBrn KbSbimn

BSn Db(Rn − BMod)

□

4. Braided monoidal (∞, 2) categories.

This gives a hint of how to build the braided monoidal 2-categories, namely we can use the
(∞, 2) KbSbim cateogory build with the n-th endormorphism category being the (∞, 1) category
KbSbimn:

Definition 4.1. Let KbSbim be the (∞, 2) category with objects being n ∈ N, and the (∞, 1)
category of morphism being:

(4.2)
{

KbSbimn n = m

0 n ̸= m.

Note that this uses the monoidal structure of KbSbimn as the internal composition of endomor-
phisms. It has a monoidal (E1) structure coming from the exterior product.

We had maps of (∞, 1) category from KbSbimn → Db(Rn − BMod). We want a similar maps
after packaging KbSbimn to the (∞, 2) category KbSbim. The way to do that is by realizing that
Db(Rn − BMod) are exactly the endomorphism category of Rn in the (∞, 2) category of derived
Morita category Mor(dgVect).

Definition 4.3. Let Mor(dgVect) be the (∞, 2) category whose objects are algebras and morphisms
are (derived) bimodules. It has a symmetric monoidal (E∞) structure by ⊗k.

The construction above defines a monoidal KbSbim → Mor(dgVect).
Now we can state the final theorem:

Theorem 4.4 (Mazel-Gee, L.L., Reutter, Stroppel, Wedrich). There is a E2 structure on KbSbim
such that the braid group action on the n-th object is precisely by Ronquier complexes F (s), making
this diagram commute:

(4.5)

E1 Sbim

E2 KbSbim

E∞ Mor(dgVect)

In words, this E2 structure on KbSbim’s underlying monoidal structure is the one inherited
from Sbim, and the map KbSbim → Mor(dgVect) takes the E2 structure on KbSbim, namely its
braiding, to the symmetric braiding on Mor(dgVect). On the level of braid group action on the
n-th object, this is precisely the diagram Equation (3.8) above.

Remark 4.6. To proof this theorem, just like how quantum group reps are deformed from represen-
tations of sln, which is symmetric monoidal, we also deform from a symmetric monoidal structure.
More specifically, an E2 algebra structure on a (∞, 2) category requires infinite coherence. The
main technical result is to lift the higher cells data from the E∞ aka symmetric monoidal structure.
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5. Applications/future directions

Let me just mention some applications/future directions here:
(1) Our main machinery is a mechanism that can produce (∞, 2) categories from concrete

data. Using this we can produce many other braided monoidal (∞, 2) categories, many
which are much more relevant in the triangle above.

(2) KbSbim currently is a pretty lame category, it has no non-trivial non-endormophisms. We
can easily add this non-endormorphism, going by the name of singular Soergel bimodules.

(3) KbSbim is not dualizable, by the simple reason that the polynomial rings Rn are not finite
dimensional. The triply graded homology is also should be thought of as sl∞ homology.
We have work in progress on how to create fully dualizable braided monoidal (∞, 2)
categories, the ones that can be plugged into TQFTs and get manifold invariants.
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