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Motivation: Dualities of U(1) gauge theories

Abelian duality is a generalization of electro-magnetic duality in general dimensions.

1 + 1D : Sigma model with target U(1) Sigma model with target U(1)

2 + 1D : U(1) gauge theory Sigma model with target U(1)

3 + 1D : U(1) gauge theory U(1) gauge theory

In the language of higher form gauge theories, We can view sigma model as 0-form gauge
theories, standard gauge theories are 1-form gauge theories.

Everytime we go up in dimension, one side goes from p-form to (p + 1)-form.

In general, in D dimension, we have an equivalence betweewn p-form and
(d − p − 2)-form U(1) gauge theories.
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Physical proof of duality

Let us quickly sketch a proof of this duality. Consider p-form U(1) gauge theory in D
dimension, with A being the p-form gauge field, F = dA the curvature.

The action can be written as

S [A] =
1

g2

∫
dA ∧ ∗dA

where ∗ is the Hodge star operator.

Now consider a different action, with fields A p-form gauge field, and B a
(d − p − 1)-form gauge field:

S ′[A,B] = g2

∫
B ∧ ∗B + 2i

∫
B ∧ dA

If we complete the square and integrate out B, we recover the original YMs action for A.

However, if we integrate out A, we get the constraint dB = 0. Therefore we can write
B = dÃ, for a (d − p − 2)-form. We ge the YMs action for Ã.
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Duality of finite gauge theories

For this talk we are interested in understanding the case that the gauge group A is finite
abelian. Note that unlike the U(1) case, p-form A gauge theories are topological field
theories.

Just as the U(1) case, they appear in different dimensions:

0 + 1D : Sigma model with target A Sigma model with target Â

1 + 1D : A gauge theory Sigma model with target Â

2 + 1D : A gauge theory Â gauge theory

Â here is the Pontryagin dual group Hom(A,U(1)). Finite abelian groups are “self-dual”:

ẐN ≃ ZN . This also explains why there is a dimension shift between U(1) and finite
groups, because the dual of U(1) = Hom(U(1),U(1)) = Z.
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Examples in low dimensions: 0 + 1 D

In 0 + 1D, aka quantum mechanics. Sigma model to A means the Hilbert space is C[A],
one state for each element a ∈ A.

0 + 1D : Sigma model with target A Sigma model with target Â

There is a pairing χ : A× Â → U(1), taking (a, α) 7→ α(a).

Using this, we can define the (discrete) Fourier transform:

C[A] → C[Â]

a 7→
∑
α

α(a) · α

This is the discrete analogue of Fourier transform, where χ(x , p) = e ipx and

δx 7→
∫
p
e ipxδp = e ipx
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Examples in low dimension: 1+1 D

Now we move on to 1 + 1D:

1 + 1D : A gauge theory Sigma model with target Â

For a 1 + 1D topological order we can assign a fusion category. In this case, we assign the
fusion category of A representations RepA and category of Â graded vector spaces. Note
the fusion product in both cases are symmetric, this is because A, Â are abelian.

The abelian duality states that they are equivalence of fusion categories. This is precisely
the character theory for finite abelian groups: irreducible representations of A are all one
dimensional, labelled by a character α ∈ Â : A → U(1).

Yu Leon Liu (Harvard) Abelian duality in topological field theories March 10, 2023 7 / 18



Examples in low dimension: 1+1 D

Now we move on to 1 + 1D:

1 + 1D : A gauge theory Sigma model with target Â
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Examples in low dimensions: 2+1 D

Now we move on to 2 + 1D, which is the most interesting dimension:

2 + 1D : A gauge theory Â gauge theory.

For a 2 + 1D topological order we can assign a modular tensor category. In this case, we
assign the Drinfeld (quantum) double to both sides: Z (RepA), Z (RepÂ).

When A is abelian, we have the Z (RepA) = RepA × RepÂ. This is an abelian topological
order where each anyon is labelled by its A-charge ∈ RepA and its S matrix pairing, which
defines a map Â → U(1), that is a Â representation. We see that Z (RepA) = Z (RepÂ).

Take A = Z2, this is the toric code topological order. Then this is the electro-magnetic
duality that exchanges e and m anyons.

Remark: currently there is a lot of work on symmetry TFT. In the end, I will relate this
duality to gauging/ungauging, Kramers-Wannier duality via symmetry TFTs.
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Bordisms and TFTs

We would like to give a mathematically rigorous proof of the duality of finite abelian
gauge theories. Unlike the U(1) case, these p-form gauge theories with finite group A are
topological. Topological field theories has a solid mathematical foundation:

Fix a dimension D. Let BordD be the category with objects D − 1 dimensional manifolds
N, and morphisms are bordisms between them.

Often we also like to add tangential structures on the manifolds and bordisms, such as
orientations, spin structures. Furthermore, if we have a (background) G symmetry, we
can also consider manifolds and bordisms with principal G bundles.

Lastly, let Vect be the category of complex vector spaces and linear maps.
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TFTs and symmetric monoidal categories

A topological field theory is a symmetric monoidal functor Z : BordD → Vect. It assigns
a vector space Z (N) to each D − 1 manifold N, and a linear map Z (M) : Z (N) → Z (N ′)
for a bordism M : N → N ′.

Symmetric monoidal means that it takes N ⊔M → Z (N)⊗ Z (M).

Since we care about the case where two TFTs are equvialent. Let me define the notion of
equivalence: given two TFTs Z1,Z2, an natural isomorphism F between them is the
following data:

for every D − 1 manifold N, an isomorphism of state space F (N) : Z1(N) → Z2(N).

For every bordism M : N → N ′, we have a commutative diagram:

Z1(N) Z1(N
′)

Z2(N) Z2(N
′)

Z1(M)

F (N) F (N)

Z2(M)
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Finite homotopy TFTs

Now let’s define these p-form gauge theories. Fix an abelian group A, a form level p and
a dimension D. We are going to define ZA,p : Bordor → Vect. This is also called
untwisted Dijkgraaf Witten theory.

Fix a D − 1 manifold N, then ZA,p(N) = C[Hp(N;A)] be the vector space with basis the
p-th cohomology group of N with A coefficients.

Sanity check: in 2 + 1D, take A = Z2, p = 1, and N = T 2 = S1 × S1. This theory ZA,p

corresponds to the toric code. We see ZA,p(N) = C[H1(T 2,Z2)] = C4, which is the
dimension of anyons in toric code.
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Finite homotopy TFTs continued

Given a bordism M : N → N ′, we have a span of cohomology groups:

Hp(M;A)

Hp(N;A) Hp(N ′;A).

p

q

Now we define ZA,p(M) : ZA,p(N) → ZA,p(N
′) to be the following:

C[Hp(M;A)] C[Hp(M;A)]

a C
∑

q(b)=a

p(b).

ZA,p(M)

for a ∈ Hp(N;A), viewed as an basis element of C[Hp(N;A)]. Similarly, b ∈ Hp(M;A).

C is some constant which is needed for composition of bordisms.
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Statement of abelian duality

Theorem

Fix dimension D and form level p. Let A be a finite abelian group. Then we have an
equivalence of higher form finite gauge theories, as functors from Bordor → Vect:

ZA,p ≃ ZÂ,D−p−1.

There is a slight caveat: the two sides are actually equal up to an invertible TFT (a field
theory that gives one dimensional state space and phasese to closed D manifolds). It
doesn’t change the state space and is related to the constant C above.

In fact, we have a generalization of this statement for abelian higher groups symmetry,
which goes under the name of π-finite spectra.
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Orientation and Poincare duality

Proving this theorem needs a number of algebraic topology machinaries. Let’s give a
quick review.

Theorem (Poincare duality)

Let N be an oriented D − 1 dimensional manifold, let [N] ∈ HD−1(N;Z) be foundamental
class. then we have an equivalence of groups:∫

N
: Hp(N;A) ≃ HD−1−p(N;A)

where the right hand side is the (D − 1− p)-th homology groups.
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Pontryagin-Brown-Comenetz duality

Recall that the Pontryagin dual Â of abelian group A is defined as Hom(A,U(1)). This

forms a duality for finite abelian groups:
̂̂
A = A. There is a non-denegerate bilinear

pairing χ : A⊗ Â → U(1).

Let N be a topological space, then we have an induced pairing on cohomology/homology
groups:

Hp(N;A)⊗ Hp(N; Â) → H0(N;A⊗ Â)
χ−→ U(1).

Brown-Comenetz duality shows that this is in fact a non-degenerate pairing:

Theorem (Pontryagin-Brown-Comenetz duality)

The pairing above makes Hp(N; Â) the Pontryagin dual of Hp(N;A).
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Isomorphism on state spaces

Reminder: ∫
[N]

: Hp(N;A) ≃ HD−1−p(N;A), ̂Hp(N;A) = Hp(N; Â).

With these 2 theorems in hand in hand, we will construct the isomorphism
ZA,p ≃ ZÂ,D−p−1 on state space. Given a d dimensional closed manifold, we want to give
an isomorphism

F (N) : C[Hp(N;A)] ≃ C[HD−p−1(N; Â)].

Poincare duality and Brown-Comenetz duality implies that they are Pontryagin dual:

̂Hp(N;A) = ̂HD−1−p(N;A) = HD−p−1(N; Â)

Therefore discrete Fourier transform gives an isomorphism

C[Hp(N;A)] → C[HD−p−1(N; Â)]

a 7→
∑
α

α(

∫
[N]

a) · α
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Application to symmetry TFTs

Gauging/ungauging: which states that given a field theory Z in 1 + 1 dimension with
anomaly-free A symmetry. Then the gauged theory Z/A has Â symmetry, and we can use
it to ungauge the A symmetry: (Z/A)/Â = Z .

Here’s how we can recover this from our result: we can view Z as a boundary to the 2+ 1
D ZA,1 theory. Under the equivalence ZA,1 ≃ ZÂ,1 in 2 + 1 D, Z is mapped to the

boundary theory Z/A 1. It follows from this that gauging the Â symmetry recovers Z .

As D − 1 dimensional theory Z with (p − 1)-form A symmetry can be viewed as
boundaries of the D dimensional ZA,p TFT, we see that we have an extension of

gauging/ungauging to general dimensions, where the dual theory has (D − p − 1)-form Â
symmetries.

1This can be shown as this duality swaps Dirichlet and Neumann boundary conditions
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Future directions

Gauging subgroup symmetries.

Continuous symmetries.

Dualities of non-abelian symmetries.

Over other coefficients: chromatic abelian duality.
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