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1. Physical Motivation

Physical systems often comes in families, where we can tune knobs such as temperature, pressure,
and the coupling constants. That is, we would like to study families of physical theories over the
space of coupling constants. Interestingly, much of the low-energy, long-distance dynamics are
indepedent are invariant (at least vary continuously) under small deformation of the constant,
forming some sort of local systems. However, there are lower dimensional critical submanifolds
where interesting behaviors occur, such as the presence of ground state degeneracy, or critical
phenonemon. To study these, physicists have drawn out phase diagrams, which cuts the parameter
spaces into different pieces, or stratums. Mathematically, we call these spaces cut into different
pieces stratified spaces. Furthermore, there is a notion of constructible sheaves on them, which are
local systems on each stratum, but the dimensions can jump across stratums.

The study of stratified spaces and constructible sheaves on them is everywhere in mathematics,
from singularity theory to geometric representation theory to genuine equivariant homotopy
theory [?]. A new homotopic approach, called exit-paths categories [?], has been successful in
understanding the structure of constructible sheaves. In particular, it says

(1) The homotopical data of a stratified space X is the homotopy type of each stratm Xp,
the space of exit paths (links) L(p, q) between each two stratum, the space of higher exit
paths that forms composition... They are packaged together into a nice ∞ category called
the exit path (∞) category Exit(X) associated to X.

(2) The data of a constructible sheaf F can be phrase in terms of Exit(X): a local system
F|Xp

on each stratum Xp, and a map of local systems pulled back over the link L(p, q) for
each pair p, q, and higher compatibilities...

In this talk we will first review the theory of exit-paths approach to stratification, then apply it to
physical systems and see how interesting math (and physics!) pops out almost immediately. To
this end we will give two examples:

(1) Berry phase and Borel-Weil: we will construct a natural G-equivariant quantum mechanical
system which recovers Borel-Weil and some parts of Beilinson-Bernstein.

(2) (Spherical) symmetry broken phases in QFT: then we will study anomaly matching in spon-
taneous symmetry breaking phases, and see Thom isomorphism and Smith homomorphism
naturally appears.

First is joint work with Ryan Thorngren, second is joint with Arun Debray, Sanath Devalapurkar,
Cameron Krulewski, Natalia Pacheco-Tallaj, and Ryan Thorngren.

2. Stratification and local systems

Definition 2.1. A stratified space is a space X together with a continuous map X → P , where P
is a poset, which we viewed as a topological space by the Alexander topology. TODO[inline]define
Alexander topology....

Heauristically, this means that
1
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(1) for each p ∈ P , we have a locally closed subspace Xp ⊂ X. Its closer is denoted as X̄p. As
a set, X = ⊔pXp.

(2) For p < q, then Xp ⊂ X̄q. We will only consider nice examples, where ...

Example 2.2 (Stratification of vector spaces). Here’s a simple example that will show up later
in this talk, let X = V be a vector space, and P = [1] = (0 → 1). The fibers over 0 and
1 are the origin 0 and R − {0}. When we have a group G and V is a G-representation, this
will be a G-equivariant stratification. As we will see later, this example is a good linear model
for understanding stratification theory, and is related to Thom isomorphism and spontaneous
symmetry breaking.

Example 2.3 (Coadjoint orbits). Here’s a more sophisticated example: let g∗ be the coadjoint
representation of a simple compact lie group G 1. The stabilizer of each point v ∈ g∗ is a parabolic
subgroup P ⊂ G. Fix a maximal torus T ⊂ G, every parabolic is conjugate to a standard parabolic
P , that is, T ⊂ P . The standard parabolics forms a poset, and g∗ is stratified over that poset.
For SU(2), su2 ≃ R3. Rotation around z axis defines maximal Cartan U(1)z. There are only two
standard parabolics U(1)z ⊂ SU(2). So the poset is [2] with fibers 0 and R3 − 0.

Remark 2.4. Stratified spaces show up all over mathematics. Here’s some examples:
(1) Singular varieties are stratified by their singularities.
(2) In general, A G-space X is stratified by the (conjugacy) class of the stabilizers. One

important example in geometric representation theory is the Bruhat stratification on the
flag variety B = G/B, stratified over the Borel group B acting on G/B on the left.

Given a stratified space X, there is a natural notion of constructible sheaf. Let’s recall some
sheaf theory:

Definition 2.5. Let X be a space and a category C, then we have the site of open subsets Op(X).
The morphisms are inclusions and open covers are open covers. A (C)-valued sheaf is a functor
Op(X)op → C that satisfies descent.

Typical choices of C are sets, vector spaces, and more ∞-categorically, spaces and spectra. Soon
we will take another leap of faith and consider C to be the category of QFTs. We will suppressed
C when it is clear.

Before defining constructible sheaf, we first define the notion of a local system:

Definition 2.6. A sheaf F on X is a local system, if for all x ∈ X, there is a neighborhood U
containing x such that F|U is a constant sheaf. Let LocSysC(X) be the category of local systems
on X.

Now we can explain what a constructible sheaf is:

Definition 2.7. A sheaf F on a stratified space X → P is a constructible sheaf if for all stratum
Xp, F|Xp

is a local system on Xp. Let ConstrC(X) be the category of constructible sheaves.

Example 2.8 (Gauss-Mannin connection). Consider a smooth morphism X → B of characteristic
0 varieties, then the fiberwise cohomology groups H∗

dR(Xb) forms a local system over B. When
there are singularities, we can stratify B by the singularities of the fibers, and the fiberwise
cohomology is no longer a local system but rather a constructible sheaves.

3. Homotopy theory of constructible sheaves and exit path categories

How can we understand constructible sheaf homotopically? First we turn to local systems.

1Note we are using the real compact versions rather than the complex version, though they are equivalent.
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3.1. Local systesm and ∞-groupoid π∞X. There is path-approach to understanding local
systems.

Definition 3.1. Given a space X, we can define the ∞-groupoid π∞X whose objects are points
in X, morphisms are paths, 2-morphisms are homotopy between paths...

This ∞-groupoid remembers all the paths information of X.
Fix a local system F . Given x ∈ X, we can assign the stalk Fx. Furthermore given a path

p : [0, 1] → X from p(0) = x to p(1) = y, then this determines an isomorphism p : Fx ≃ Fy.
Furthermore, any homotopy between two such paths will define a homotopy between such two
isomorphisms. In fact, this construction defines a functor:
(3.2) mon : LocSysC(X) → Fun(π∞X, C)
In fact, for X nice enough, this is an equivalence:

Theorem 3.3 ([?]). mon is an equivalence of categories.

Remark 3.4. Since π∞X only depends on the homotopy type of X, we see that LocSys(−) is a
homotopy invariant.

This gives a homotopic approach to understand local systems, it is simply a functor from the
∞-groupoid π∞X to our target category C.

Note that Fun(π∞X, C) is a path-theoretic definition of local systems, as oppose to the sheaf
definition which is focused more on open sets.

3.2. Exit path categories. To generalize this to constructible sheaves, we need to find the
analogue for π∞X. Recall that π∞X encodes the path (and higher path) data of X. In the case
that X has more than one stratum, we need to be more selective about what kind of paths are
allowed.

Consider an open closed decomposition, where X = X0 ⊔ (X − X0), where X0 is a closed subset.
Take x ∈ X0 and y ∈ X − X0, given a path p : [0, 1] → X from x to y such that x = p(0) ∈ X0
and p((0, 1]) ⊂ X − X0, then we see that we can only transport F in one direction:

Any element of Fx can be lifted to an open set, thus we can restrict to some element of Ft for
t ∈ (0, 1]. Now since p((0, 1]) lives entirely in X − X0 and FX−X0 is a local system by definition,
we see that we can transport it to y. Therefore we get a map Fx → Fy, but crucially in reverse.
Note that this map also doesn’t have to be invertible.

Definition 3.5. Given a stratified space X → P , and two points p < q ∈ P . An exit path in X
over p, q is a map p : [0, 1] → X such that

(1) p(0) ∈ Xp.
(2) p((0, 1]) ⊂ Xq.

Let L(p, q) be the space of exit paths over from p to q. Similarly, given p < q < l, we can define
higher exit paths ∆2 → X between three exit paths from over (p, q), (q, l), and (p, l). They witness
compositions of exit paths.

Note that we have a span:

(3.6)
L(p, q)

Xp Xq

s
t

Now we can define the exit path category:

Definition 3.7 (HA). Let X → P be a stratified space, then there is an ∞ category Exit(X)
defines as follows:
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(1) The space of objects of X is ⊔Xp for each p ∈ P .
(2) The space of morphisms from Xp to Xq is given by L(p, q).
(3) The higher morphisms are given by higher paths.

Exit(X) has a canonical conservative map down to P .

Remark 3.8. Exit(X) remembers all the homotopical information of X. Intuitively, this is saying
that we can glue back X, starting from the stratums Xp and glue pairs of them by the link L(p, q),
and then triplets of them by the higher links...

A precise statement is the following: we can define a ∞ category of stratified spaces up to
stratified homotopy equivalence. By [?], it is equivalent to the category of ∞ categories with a
conservative functors to P . The map takes stratified X to Exit(X) → P . The inverse takes such
a category and reconstruct X from its stratums and the links.

Remark 3.9. In the case where X is a manifold and the stratification is nice, then L(p, q) is the
homotopically equivalent to the sphere S(ν) of the normal bundle ν of Xp inside X̄q.

Just like the local system case, we have the following theorem:

Theorem 3.10 (HA). We have an equivalence of categories:
(3.11) ConstrC(X) ≃ Fun(Exit(X), C)

While this is great, we will use the [?]’s approach, where we view ConstrC(X) itself as stratified
category over P . Since we will not give the precise statement here:

Theorem 3.12 ([?]). A constructible sheaf F on stratified space X is equivalent to the following
data:

(1) A local system FXp on each p.
(2) For p ≤ q, we have the a compatibility map over the link L(p, q), via the maps s : L(p, q) →

Xp, t : L(p, q) → Xq:
(3.13) s∗FXp → t∗FXq .

This means that we give a family of maps Fx → Fy for every exit path from x → y.
(3) Higher coherences over higher links.

Intuitively, this is saying that just as how we can recover X from Exit(X), we can also recover
F from the the local systems FXp and the gluing between them.

Now let X be the stratified space of field theories, and F be the constructible sheave of (IR
limit) of QFTs. Then we see that this theorem tell us that to understand F , we need to

(1) the local systems over each stratum. In physics speak, this is how the system over a single
point on the stratum, as well as how the system change under adiabatic variation of the
parameters.

(2) A compatibility map between the theories over the link: RG interfaces between the theories.
Let’s try to apply these ideas!

4. Stratification in Quantum Mechanics: Berry phase and Borel-Weil

To start off, let’s do this in quantum mechanics. Here a quantum theory is simply a Hilbert
space together with a Hamiltonian H. The low energy limit is simply taking the groundstate space.
When we study them in a family over X , we take the family of Hilbert space to be H × X → X
and define a family of Hamiltonian Hλ over the parameter space X. At each point λ ∈ X, let
Ex ⊂ H be the subspace of groundstates. Let’s stratify X be the dimension of the groundstates,
then E is a constructible sheaf over vector spaces over X, by the adiabatic theorem in Quantum
mechanics. The holonomy is given by the Berry connection, which is the covariant derivative on
X inherited by being a subbundle of the flat bundle H.
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Let’s consider a simple G-equivariant version: Take a (unitary) finite dimensional G representa-
tion V , which we take to be a Hilbert space. Let the parameter space X = g. Let’s consider a
family of Hamiltonians Hλ, defines as the following:
(4.1) Hλ(v) := λv

where the right hand side is the canonical lie algebra action. Note that this action is G-equivariant,
in particular, G acts on the parameter space. Let’s do a specific example:

Example 4.2 (Spin 1
2 in magnetic field.). Let G = su2, V = 2 the spin 1

2 representation. Then
we can identify g ≃ R3 with the lie algebra action being the cross product, we will write the vector
as B⃗. Furthermore, x, y, z acts on V by the pauli matricies X, Y, Z, which we can write as S⃗.
Therefore the Hamiltonian is
(4.3) HB⃗

:= B⃗ · S⃗ = BxX + ByY + BzZ

Viewing B as the magnetic field and V the internal spin degrees of freedom, then this is the
spin-magnetic coupling.

The stratification of R3, as mentioned above, is simply 0 → R3. That is, away from 0, where
the stabilizer subgroup is SU(2), the stabilizers subgroup is a maximal torus of rotation away
from that vector. Note that the orbit is SU(2)/U(1) = S2 ≃ CP 1 is the flag variety 2

Let’s look at the groundstates bundle E . In the generic stratum B⃗ ̸= 0, the hermitian matrix
B⃗S⃗ is non-zero and has distinct eigenstates. One easy way to see that use the G symmetry to
rotate so B⃗ = kz, so

(4.4) B⃗ · S⃗ =
(

k 0
0 −k.

)
We pick the −k eigenstates. This defines a line bundle E over R3 − 0. Let’s study this at an orbit
CP 1. Note that CP 1 has a holomorphic structure, and with a little more work we can show that
E forms a holomorphic line bundle over the flag variety, in fact it is the line bundle O(−1)!

Remark 4.5. There is a connection on that line bundle, it is called the Berry connection.

This is not surprising as E ⊂ C2 × CP 1. Note that C2, the doublet is percisely E|0! Instead of
starting with the doublet, it is straightforward to generalize:

Proposition 4.6. Given simple G and V an irreducible representation of G, then over the generic
stratum, the associated constructible sheaves restricts to a line bundle E. Restrict further to an G
orbit B = G/T , E is a holomophic line bundle on G/T . In fact, the holomorphic section (of the
dual of) E is V .

Thus this gives a concrete simple construction of the Borel-Weil line bundle! While we recover
this theorem, the interpretation/intuition is quite different.

Here’s the first difference: Let’s recall that in Borel-Weil, we construct the line bundle n G/B
using parabolic induction. Here the line bundle is simple: first we embed B as a generic orbit in g,
for a fix λ ∈ g, we take the eigenvector with the lowest eigenvalue. This is also the lowest weight
vector of the Tλ acting on V , where Tλ isthe maximal torus generated by λ. As λ varies in, the
groundstate varies and forms a nontrivial line bundle.

In particular, we actually define the vector bundles in parabolic Borel-Weil all at once: for
a nongeneric λ, whose stabilizer is a parabolic subgroup P ⊂ G, with orbit partial flag variety
G/P . Then λ’s lower eigenstates might have degeneracy and this defines a vector bundle on G/P .
However, its holomorphic sections are still E. They are all nicely glued together into a single
constructible sheaf over g.

2one again we are doing compact mod maximal torus, which is equivalent to the complex mod Borel.
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Remark 4.7. It is important that we work with the real G because the g action is (anti)-hermitian
and we can order the eigenvalues to defines what the lowest one is. For GC the eigenvalues are
just complex, which doesn’t have any ordering.

Here’s the second difference: In Borel-Weil, we recover V from the line bundle E by taking
holomorphic sections. However, here, the relation between V and EG/B is different. Recall that V
is the value of E over the most singular stratum 0. Recall that the data of a constructible sheaf is
the local system over each stratum aka the Borel-Weil line (really vector) bundles, together with
the compatibility over the link for for each two pairs of stratum p, q.

Let’s take p to be the origin and q the generic stratum, which is homotopic to B = G/B, one
can show that the homotopy type of the link L(p, q) is homotopic to G/B too, with the span
diagram:

(4.8)
G/B

∗ G/B
id

In general, it looks like

(4.9)
P ′\G/P

G/P ′ G/P

Over the link, we need a map t∗E|G/B = E|G/B → s∗E∗ = V . This is describing how when we get
the ground states near the origin, how they are embedded into the degenerate ground state at the
origin. The nontriviality of the stalk at the origin is coming from the fact the twisting over the
Borel-Weil line bundles. That is, the curvature is protecting the ground state degeneracy at the
diabolical point. Furthermore, the diabolical version describes parabolic induction in a geometric
manner, by having them as coadjoint stratums and considering the link between them.

Remark 4.10. There is a generalization of this to infinite-dimensional U(g) modules and Beilinson-
Bernstein. We will just remark that the D-module structures on G/B is coming from the Berry
connection. Once again we can think about it as asking for the lowest weights over Tλ for each λ.

The main point here is that, even in quantum mechanics, we can find interesting mathematics.

5. Symmetry Breaking phases and anomalies in QFT

Let’s kick it up a notch by considering higher dimension quantum systems, that is, Quantum
field theories. I will complete this part later.
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